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The problem of the dynamic diffraction of x-rays in conditions of total external reflection on planes
perpendicular to the entry surface is solved with allowance for small misorientations of the reflecting planes.
It is shown that for misorientation toward the incident beam one may obtain a continuous transition from
diffraction in the Bragg geometry to diffraction in the Laue geometry for the same reflection by varying the
angle between the incident beam and the surface of the crystal. It is shown that diffraction in conditions of
total external reflection is uniquely sensitive to small misorientations of the reflecting planes.

In this article we develop the dynamic theory of x-ray
scattering for diffraction by crystals in conditions of total
external reflection,

A scheme of x-ray diffraction with total external re-
flection was suggested in Ref, 1, In this scheme the in-
cident beam of x-rays is directed onto the crystal so that
diffraction conditions are realized in the Laue geometry
{or planes perpendicular to the entry surface, and simul-
taneously makes a small angle ¢ with the surface (Fig. 1),
The small angle of incidence — of the same order as the
critical angle for total external reflection —gives intense
specular reflection of the incident and diffracted wave
from the surface of the crystal, and in principle this makes
it possible to investigate the crystal structure of thin sur-
face layers a few angstroms or thicker,

Afanas'ev and Melkonyan? constructed a dynamic
theory of diffraction in conditions of total external reflec-
tion for perfect crystals. It was shown that the angle ¢'
of emergence of the specularly reflected diffracted wave
depends on how accurately the Bragg condition is satisfied.
In other words, there is a strict correspondence between
the angles ¢ and @' and the parameter o determining the
deviation from the exact diffraction condition,

a=0*—]"? 1)

where

o= (%t Ka) *—no®
%o
where %, is the wave vector of the incident x-ray wave
and Ky, is the reciprocal lattice vector,

~—2sin 293(9—93), (2)

Realization of relationship (1) opens up fundamentally
new experimental possibilities, On this basis Imamov
et al,3 performed an experiment in which the intensity Py
of the specularly reflected diffracted wave was rep-
l“esented as a function of the angle &', and not as a func-
tion of the angle §, In this method, relatively coarse
Measurements of the angles & and &', with errors of a
few minutes of angle, reflect very small deformations of
the crystal lattice, corresponding to changes of a fraction
of an arc second in the parameter a,

Although in Refs, 2 and 3 the fundamental theoretical
Postulates were confirmed, there were also appreciable
dlscI'GEpancies between the theoretical predictions and the
€Xperimental measurements, and these have stimulated

rther development of the theory,
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In this article the problem of diffraction in conditions
of total external reflection by perfect crystals is solved
with allowance for small misorientation of the reflecting
planes from the direction of the normal to the surface,

It was found that misorientation by small angles ¢ of
the order of the angles &, ®' appreciably alters the an-
gular dependence of P,

This fact may be important when experimental data
are compared with theoretical calculations, since, for
example, for silicon and germanium with CuKa radiation
intense specular reflection arises at angles of incidence
of & £ 10'-20', whereas the accuracy with which the orien-
tation can be set in cutting the crystals is ¢ ~ +30', and
the accuracy with which the misorientation can be mea-
sured by known x-ray methods and thus choose the speci-
mens is ¢ ~ £15',

Let us consider the scheme of diffraction shown in
Fig. 1, For simplicity we shall assume that the incident
radiation is polarized perpendicular to the plane of scat-
tering formed by vectors k; and ky, (0-polarization),

Considering the conditions of continuity of the tangen-
tial components of the wave vectors at the entry surface
of the crystal and the relation between vectors kj and kp
and the misorientation of the reflecting planes through a
small angle ¢ from the direction of the normal to the
surface, we obtain the following relation between the angle
of emergence of the specularly reflected diffracted wave
&', the angle of incidence ®, and the parameter « of de-

FIG. 1. Scheme of asymmetric diffraction in conditions of total external
reflection. 1) Reflecting plane. Case ¢ = 0 corresponds to symmetric
diffraction and is considered in Refs. 1-3.
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viation from the exact Bragg condition:

a=(D+¥)*—0" (3)
where
v =2(p sin 93 (4)

is the effective angle of misorientation,

Taking account of misorientation, the fundamental
equations of the dynamic theory can be transformed to the
following form (see, e.g., Ref, 2):

(u*—@%) Dy=yeDyty4aDh,
(5)
[(u+‘P)z—®’2]Dn=XoDh+X}an

where u = kyz/% is a parameter to be determined,

In this case the dispersion equation is not biquadratic
as in Ref, 2, but a general quartic in u,
(@ —@*—x,) [(u+¥) 0" —xe] —xx»=0. (6)
Equation (6) is most conveniently solved by the numeri-
cal method of tangents, From its four roots u®) we must
choose the two for which Imu() > 0 (thick-crystal approxi-
mation),

It is easy to prove that Eq, (6) always has two roots
with a positive imaginary part and two with a negative
imaginary part. In fact, when xj, = Xjh = ¥ = 0, Ed. (6)
becomes a biquadratic equation with real coefficients,
which always has two roots with a positive imaginary
part and two with a negative imaginary part, Let us con-
sider the dependence of the roots of Eq. (6) on the param-
eters Xjgs Xijp» ¥ and suppose that for some values of xj,
Xjhs ¥ # O the sign of the imaginary part of some one of
the roots is reversed, Correspondingly for these values of
the parameters, Eq, (6) has a real root, However, by
direct substitution we can easily verify that for no physi-
cally possible values of these parameters can the real
root simultaneously satisfy the real and imaginary parts
of Eq. (6), This shows that Eq, (6) always has two roots
with a positive imaginary part and two with a negative
imaginary part,

In order to determine the amplitudes Eﬁ and Eos we
must use the condition of continuity of the tangential com-
ponents of the electric and magnetic fields at the entry
surface of the crystal,

The first conditions take the form

(0] (Eo—Eos) =u“)Do“) +LL(2)D¢:Z) y
(&3] (2) (73)
—O'El=@M+¥)D, +@®+¥)D,".
In this case, the second conditions are equivalent,

up to the first terms in the expansions in ¢ and &', to the
conditions of continuity of the normal components of the
electric fields,

E,+Es=D{"+DS”,

Ev=D{"+D". (7b)

Simultaneously solving (5) and (7) we get

Ev= (8)
—20WOW® (u®—u®)E,

WD (@O + @) (u® + ¥ +0")— WO (u® + 0) (uV+ ¥ + )]
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where
W=y 2 —@2—y,, i=1, 2.

Finally,
Eh' Q’
" -, (
P, Z | o 9

1, POSITION OF DIFFRACTION MAXIMUM WITH
ASYMMETRY

To investigate Eq, (6) and its roots, we change frop,
the variable u to variable 4,

6=u—-V(D2+Xu. (10)

This variable characterizes the deviation of the nor-
mal component of vector k; from the normal component
of the usual refracted vector k, corresponding to reflec-
tion without diffraction:

6=(k0:'_\kz)/%°'
Using Eq, (10), we can write Eq, (6) as follows:

85 (6+2V D% +7,) [6 (6+2V O*F 5, +2W) +B] —ymn=0, 1y
where
p=a—2¥ (O—TV®*+x,) (12)

is the parameter of deviation from the exact Bragg angle
for asymmetric diffraction, For the parameter 8 we have

p=( Oy + W )2 — (YO *+x0) % (13)

For sufficiently large values of the angles &, &' »
&, = V Ix,l, relation (12) becomes the standard expression
of dynamic theory (see, e.g., Ref. 4):

’

—— :F_%) (14

(the sign + corresponds to & + ¥ < 0),

In contrast with (14), relation (12) gives a finite
displacement of the diffraction maximum in the limit
& — 0 from the position of the maximum of kinematic
diffraction, This result is the same as thatin Ref, 5, and
comes from allowance for the phenomenon of total ex-
ternal reflection ofr the incident wave,

The character of Eq, (11) depends on the sign of the
misorientation ¥, If we regard this as a parametric equa“
tion depending on the parameters ¢ and B(®'") with fixed
values of the misorientation ¥, then when ¥ > 0 Eq. (11)
contains two singular points, ® = &, and 8 = 0, corre-

Py
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FIG 2. Diffraction pattern in Laue geometry for misorientation toward
specularly reflected beam. Silicon, 220 reflections, Cu Ke radiation, ¢ =

30" (¥=124". 1) ¢=5; 2) 10', 3) 15",
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fG. 3. Diffraction pattemns in Bragg geometry for misorientation toward in-
cident and specularly reflected diffracted beams; @ = —30° (¥ =—24"). a)
formation of Darwin table with increasing angle of incidence: 1) &= 10;
9)13; 3) 17; 4) 20'. B Transition from Bragg geometry to Laue geometry
with further increase in angle of incidence (transition boundary &g = 27.5"):
5 @ =22; 6)25; T)30; 8) 35,

sponding to the boundary of total external reflection and
the diffraction maximum; when ¥ < 0, another singular
point arises in the equation, O=T0,;+¥:=0;,. We shall
now consider these two cases separately,

2, ASYMMETRIC LAUE DIFFRACTION WITH
INCLINATION OF REFLECTING PLANES TOWARD
SPECULARLY REFLECTED BEAM (¥ > 0)

If ¥ >0 (assuming also that ¥ > &;), then in view of
Eq. (13) it is impossible to direct the incident beam onto
the crystal in such a way that the exact diffraction con-
dition (8 = 0) and the condition of total external reflection
are simultaneously satisfied for the diffracted wave (&' <
$,), For misorientation toward the specularly reflected
beam (¥ > 0) there is therefore a transition to asymmetric
diffraction in the Laue geometry, accompanied by a rapid
reduction in the intensity of the reflected diffracted wave
in comparison with the case of symmetric diffraction in
the Laue geometry (¥ = 0), and when ¥ > &, for any angles
of incidence we shall have Pﬁ(dﬁ, &") « 1 (Fig. 2).

3. ASYMMETRIC BRAGG DIFFRACTION WITH
INCLINATION OF REFLECTING PLANES
TOWARD INCIDENT AND SPECULARLY
REFLECTED DIFFRACTED BEAM (¥ <0)

When ¥ <0, the diffraction pattern becomes more
complicated, As easily seen from Fig, 1, at angles of
incidence & < ép1, the normal component of the vector
ky, is negative:

Re kr.=Re ko,+K,.,<0 (KA:=Kh(p<0) .

The diffracted beam therefore emerges through the entry
surface of the crystal, corresponding to diffraction in the
Bragg geometry, In this range of angles of incidence ®
the wave ‘rc}sl is the normal (not specularly reflected) dif-
fracted wave in vacuum,

H Depending on the angle of incidence & we can dis-
Inguish three characteristic regions,

1
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FIG. 4. Influence of small misorientations on intensity of curves of PS(2")
(®=14". 1)®=5 2 0; 3)5".

1. For angles of incidence 0 < & < &, the incident wave
undergoes total external reflection, and correspondingly
part of the intensity is transferred to the specularly re-
flected wave, and the intensity at the Bragg maximum is
relatively low (Fig. 3, curve 1),

2., For angles of incidence @, <O®<Pu=V® +¥* the
intensity at the Bragg maximum may reach unity, and if
w| > &, then in this range of angles of incidence the
curve of PE(@") has a shape similar to a Darwin "table"
with an angular width of several minutes (Fig. 3, curves
3-5),

3. For an angle of incidence ¢ ~ &py, there is a tran-
sition to diffraction in the Laue geometry, and when & >
&gy, it is not the diffracted wave itself which reemerges
from the crystal, but its specular component, the intensity
of which rapidly decreases with increasing angle of incid-
ence (Fig, 3, curves 7-8),

Thus we observe a continuous transition from diffrac-
tion in the Bragg geometry to diffraction in the Laue geom-
etry for the same reflection plane as a result of a change
in the angle of incidence of the x-rays on the crystal,

4, SENSITIVITY TO SMALL MISORIENTATIONS

The above results indicate that diffraction under con-
ditions of total external reflection is uniquely sensitive to
small deviations from the exact orientation of the reflect-
ing planes, From the analysis in Secs, 2-3 it follows that
the greatest differences should appear in the range of
angles of incidence

O <P<Dp=VD,+¥?
i,e., when & ~ &, (if I¥| «< &),

Figure 4 shows curves of Pﬁ vs &' for & = 14', cal-
culated for the 220 reflection in CuKa radiation from
single crystals of silicon (®, = 13,34") and misorientation
of only 5' changes the intensity by 25%.

According to these data, in experiments on diffraction
with total external reflection it is necessary to impose
extra requirements on the precision of the orientation of
the surface of the test crystals relative to the reflecting
planes, and also on the precision of treatment of the sur-
face, In particular, the discrepancies observed by Imamov
et al,? between the theoretical calculations and experi-
mental measurements are apparently due to slight devia-
tions of the specimen surface from the (111) plane due to
the cutting and treatment of the surface,
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%W, C. Marra, P. Eisenberger, and A, Y. Cho, J. Appl. Phys., 50, 6927
(1979).

Aleksandrov et al. 121



ZA. M. Afanas'ev and M. K. Melkonyan, Acta Cryst. A 39, 207 (1983).
SR, M. Imamov, A. L. Golovin, S. A. Stepanov, and A. M. Afanas'ev, in:
Proc. Int. Ion Eng. Congr. ISIAT'83 and IPAT" 83. Kyoto (1983), p. 1913;
Phys. Status Solidi a 77, k91 (1983).

“Z. G. Pinsker, X-Ray Crystal Optics [in Russian), Nauka, Moscow (138,
SA. Kishino and K. Kohra, Jpn. J. Appl. Phys. 10, 551 (1971). )

Translated by S, G, Kirsch

122 Sov. Phys. Crystallogr. 29(2), Mar.-Apr. 1984 0038-5638/84/02 0 122-04 $03.90 © 1984 American Institute of Physics 122



