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Abstract — A method for simulating X-ray grazing-incidence (surface) diffraction from multilayer crystal struc-
tures and superlattices was developed. The method is based on the solution of the problem of dynamical X-ray
diffraction in each layer, the calculation of 4 x 4 transfer matrices for layers, and the use of dynamical thick-
crystal approximation. The respective computations showed that the results are reproducible for = 102 and even
more layers. Therefore, this method can be very useful for theoretical calculations of surface structures by X-ray

diffraction data.

1. INTRODUCTION

In!recent years, surface X-ray diffraction (SXRD)
has been successfully used for studying the perfection
of multilayer structures [1 - 7]. But until now, the theo-
retical models have been developed only for certain
cases. Thus, Golovin et al. [1] suggested a method for
interpreting surface diffraction for several amorphous
layers on the crystal surface. Golovin et al. [2] also sug-
gested a method for interpreting surface diffraction
from crystalline surface layers for the limiting asym-
metric case, while Pietsch [5] considered surface dif-
fraction from ideal periodic superlattices. Melikyan [8]
developed a method for simulating surface diffraction
proceeding from the kinematical theory of X-ray dif-
fraction. But this method cannot satisfactorily describe
scattering in perfect structures because of the initial
assumptions made. Andreeva et al. [9, 10] derived dif-
ferential equations of surface diffraction in the matrix
form, but the cumbersome and unstable solutions of the
equations for thick crystals make them inapplicable for
processing experimental data. Finally, Rhan and
Pietsch [3] derived a system of equations for an arbi-
trary sequence of crystalline and amorphous layers on
the crystal surface and suggested that this system can
be solved numerically using the Gauss method. Unfor-
tunately, in practice, this method cannot be used for
more than five to six layers owing to the rounding-off
errors in the numerical solution of the system of 4 X N,
equations, where M, is the number of layers. Thus, in
the general case, quantitative analysis of the experi-
mental data on surface diffraction from multilayer
structures has been impossible.

In Section 2, I suggest a modification of the Rhan
and Pietsch method [3]. It reduces the computations to
4 x 4 matrices, increases the accuracy of these compu-

! In memory of Z.G. Pinsker.

tations, and extends them to structures with a large
number of surface layers. Section 3 considers the
dynamical thick-crystal approximation chosen for sim-
ulating surface diffraction from multilayer structures
and illustrates its practical use.

2. THE MATRIX METHOD

Let us consider surface diffraction from a multilayer
structure formed by an arbitrary sequence of amor-
phous and crystalline layers. I assume that the lattice
constant is the same for all the surface crystalline lay-
ers, which is usually the case.® In the approximation of
dynamical diffraction, the wave field in vacuum outside
the crystal and in surface layers (for both polarizations)
can be written in the following way (see, e.g., [3]):
in vacuum

E,(r) = {E,exp(ix®,2) + E exp (-ix®,2)} :
x exp(ix,r) + {E,exp(ix®,2)} exp [i(x + h),r] ,( )

in crystalline layers

D:(r) = { i D}’exp (ixufz) } exp(ix,ry)
j=1

2)
+ { iV;D;CXP[ix(u;+\|I) z] }cxp Litx+h),r,],
j=1

and in amorphous layers

21t should be noted that crystalline layers with spacings differing
by Ad/d > 10~* give no contributions to diffraction and, therefore,
can be considered as amorphous.
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DX(r) = {Dkexp(ixugz) +Dg,exp (—ixugz)} exp(ix,ry)

+ {D:exp (ixu:z) + D:,exp (—ixu:z)} exp [ix+h),r,]
3)

where E, = 1, E,, and E, are the amplitudes of the inci-
dent, specularly reflected, and diffracted waves, respec-
tively. The superscript k=1, ..., N is the layer number
in a multilayer structure; x is the wavevector of X-rays
(x = |x]); h is the reciprocal-lattice vector providing
surface diffraction; @, and @, are the angles of entrance
and departure with respect to the surface; and uf are
the solutions of the fourth-order dispersion equation for
dynamical diffraction in the kth crystalline layer
G=1..,%:

W —@2—xh [+ W) -0 -xo] = 1k @

where x;, x: , and xf; are X-ray polarizabilities of
the kth layer; y = 28sin(Bp); O is the angle of mis-
orientation of the h vector with respect to the surface;

vt = (u¥ - @2 — %) /%} are the amplitude ratios of the
diffracted and transmitted waves for the jth solution (4);

and uf,' p = A/&Dg’ at xf,. It is seen that four wave fields
are excited in each layer. It is known [11] that equation
(4) has four solutions: two attenuating and two enhan-
cing with the crystal depth. They are characterized by
Imu; > 0 and Imy; < O, respectively. The enhancing
solutions are considered as the waves reflected from
the lower layer boundary. Therefore, the waves with
Imu; < O for the last layer (substrate) are taken to be
very weak and can be eliminated from formulas (2) and
(3) (the so-called thick-crystal approximation).

Thus, for a structure consisting of N layers, I arrive at
4N unknown wave amplitudes: two in vacuum (E,, E})
and 4(N — 1) + 2 in the crystal. These amplitudes can be
determined from the set of 4N boundary conditions at
N layer boundaries for the fields and their derivatives
[3]. In particular, the equations at the vacuum-first
crystalline layer interface can be written in the follow-
ing way:

4 4
E,+E,=Y.Dj, E,=) VD,
s= = )
4
q)o(.Eo“Es) = Z“}D}’
j=1

4
~®,E,= Y w;D;.
j=1

The equations for the boundaries between two crystal-
line layers and between two amorphous layers are writ-
ten as
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4 4 4
k k+1 knk k+1 ~k+1
fpt= YD, Y fViDia=3 Vi D
j=1 j=1 j=1

j=1
4 k Kk d k+1~k+1
fo“iDi =4 D; (©)
j=l j=l
- k ko~k 3 k+1 k41
ZfiwiDigk:zWi D;";
j=1 ji=1

k -1k k+1 k+1
f:Do "'f: Dy, =Dy " +D,,

k -1k k+1 k+1
f:Dh +f: Dy,=D, +D,,

k k -1k E+1, k41
“o(/:Do"'f: Dy,) =uy (Dy  +Dy, ),
k+1

W (Dt + D) = upt (D + D),

respectively. I used the following notation:

f¥ = exp(ixt*uf), gt =exp(ixty), f%, =exp(ixt‘uf ,);
¢ is the thickness of the kth layer.

As I have already mentioned, Rhan and Pietsch [3]
suggested that the system of 4N boundary conditions be
solved by using the Gauss method. Here, I used a dif-
ferent method.

Let us rewrite the equations at each interface in
matrix form. With this aim, the four-component D* vec-
tors and the 4 X 4 @* and b* matrices for the right- and
lcf(t:jdand sides of the boundary equations are intro-
duced:

and el )

k
D} D,
D} D}
D:t = : ’ D:m = : ’ (8)
D3 DO:
D} D,
1111 101 O
. |vivivsve R 01 0 1
acr- k k IR a.m = k k ;(9)
W, Uy Uy U, up 0 —up 0
w',‘ w; w; w: 0 “: 0 ‘“:
b= GaF',  bin = anF: (10)
where
1 if i=1,3
= = of E_1 7 ’
Ffj _f;'taij’ Gl‘] glaij’ gl { gb if i - 2’ 4.

In accordance with the thick-crystal approximation,
the vector D* for the substrate has only two compo-
nents, and the matrix a* has only two columns.

Let us also introduce the following quantities
for the fields in vacuum (above the crystal surface):
a four-component incident vector E', a two-component
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vacuum vector EY, and a 2 X 4 vacuum matrix b in the
form:

1 1 0
i 0 E.r v 0 1
E'=lg, —(Eh),andb =| _p, o @D
0 0 -0,

The boundary conditions can then be rewritten in the
form

b’E' +E'=a'D',
b'D' = &°D?

kak = ak+le+l (12)

where D" = D* and a@" = @’ are a two-component vector
and a 2 X 4 matrix for the substrate, respectively.

Thus, it is evident that the complete system of equa-
tions is quasi-diagonal

(b"-a' 0 0 0O 0 O
0 b -a> 0 0 0 o0
0 0 B -d 0 0o 0
00 0 b 0 0 0
00 0 0 ..-4% 0 o
0 0 O AR |
N-1 N
L0 0 0 O o & -d) g5
E' .
(Dl\ E
) 0
D 0
3
D]
D' ? 0
p-! 0
\ \ 0 /
D"/

and, therefore, solution (12) can be substantially sim-
plified. If one begins to solve system (12) with the last
equation, one arrives at
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b +E= al(bx)_1 aN-l(bN-l)-laN
or
b +E= (T .. TV 'd"D".

From now on, the products T*= g*(b*)™* are to be called
the transfer or T matrices of the layers. It follows from
(10) that

T: = d(F%(a)™'G* and Tt = a(F)7'(@). (15)

Here (FY);' = (£)7'8;, and (GY7 = (8D 7'S;;

If the layer thickness tends to zero, then

F—1I, G—1 T —[d@"'1—1L
In other words, the T matrix of an infinitely thin layer
tends to the unit diagonal matrix.

Equation (14) has a simple physical interpretation.
If all #* = 0, the equation coincides with the equation of
surface diffraction for a perfect crystal. If the crystal
surface consists of several layers, the matrix of the sub-

strate is modified by multiplying the T matrices of all
the layers:

(14)

a=T..TV-a. (16)

Equations (14), with regard for (16), form the
system of four equations for four unknown amplitudes

E,, E,, D}, and Dj:

a’'D*'-b'E'=E' an
or
p
ay, D} +a,,D;-E, =1
ayD\ +anD;-E, =0 W7

~s s -3
a3|Dl + a3zD; - ¢0E' = (DO

ayD;) +ay,D;-,E,=0.

\

System (17) can easily be solved by any method.

Thus, the solution considered above has the advan-
tage of using no operations with matrices of ranks
higher than 4 x 4 and, therefore, should be stable in
computations.

In order to implement the algorithm in practice, one
must

— calculate the g* matrices,

— determine the inverse matrices numerically by any
standard algebraic method,

— calculate the T* matrices and their product, and

— solve the system of equation (17) by the Gauss or
any other method.

The reflection coefficients are calculated by the fol-
lowing standard formulas:

Ps= IEslz’
P,= (d)h/d>0)|Eh|2,

(18)
(19)
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The experimental P, values are often measured as
functions of angle ®,. In this case, one must multiply
the right-hand side of (19) by 2®, [12].

3. DYNAMICAL THICK-CRYSTAL
APPROXIMATION

Allow a multilayer structure to be sufficiently thick,
for example, 10* A. It is known that the X-ray field in
surface diffraction attenuates in the crystal at a depth of
about 102 A. The question arising is whether it is possi-
ble to attain the maximum calculational accuracy if one
takes into account the contributions that come to surface
diffraction from all the layers. Below, I will show that,
in most cases, the answer to this question is negative.

To clarify the situation, let us formally apply the
algorithm described in the previous section to a multi-
layer structure consisting of N identical layers (ie,toa
perfect crystal). For the sake of simplicity, let us
assume that y = 0, and, therefore, G* = . Then, equa-
tions (14) and (15) yield

‘-’:i (aF"a'l)(aF"la_l) ..(aF'ahd
—~—
(N -1) times

—a (F—I)N-l (a-la:) -4 (F-I)N-l’

(20)

where (F-')V-1 is the diagonal matrix consisting of two
increasing exponents corresponding to two attenuating
solutions with Imu; >0

[(F-I)N- l]j' = sﬂcxp[—ix(N— l)tu]], j, l = l, 2.- (21)
It follows from (20) and (21) that, if the total thick-
ness of all the layers f,,, = (N — 1)t is either small or
comparable with the depth of X-ray field attenuation in
surface diffraction [f,, = max(xImu;)™'], then the matrix
elements @° and & are of the same order of magnitude
and equation (17) can easily be solved numerically. If
t,« > 1., then the exponents in (21) have high values,
and ||@* || > |||l It follows from (17) that, in this case,

the solutions Di(t,) and D3(t,) should be small. In
accordance with (2), I have

Dj(t,) = Dj(0)exp(ixtyyis)- (22)

Substitution of (22) into (21) allows one to diminish the
large exponents in (21) and to consider the equations
for a perfect crystal. But the attempt to solve equation
(17) on a computer without renormalization would
result in errors of the accuracy loss type because of a
large difference between the orders of magnitude of a*
and b". Thus, if #,,, = 10* and ¢, = 50 A, the exponents
in (19) attain unrealistic values of 10'%,

The problem of loss of accuracy can be solved in
two ways:

(1) Similar to the previous example, I can renormal-
ize the amplitudes in each layer of a multilayer struc-
ture with regard for attenuation. This method seems to
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be quite natural for a perfect crystal, but meets obvious
difficulties for multilayer structures characterized by
different attenuation within each layer.

(2) A more physical approach takes diffraction into
account only in those upper layers of the multilayer
structure where X-ray fields are characterized by sub-
stantial amplitudes, but it ignores the contributions
from deeper layers. This approach corresponds to the
standard thick-crystal approximation known in X-ray
diffraction.

In practice, the thick-crystal approximation can be
used in the following way: When calculating the prod-
uct of T matrices in (16), one should attentively follow
the behavior of the maximum element of the matrix-
product after each matrix multiplication by the T matrix
of each following layer (beginning with the first layer).
If the product attains a very large value (for example,
100 to 10'), the X-ray field in the respective layer
becomes very weak, and the reflection of X-ray waves
from the lower boundary of this layer and all of the
deeper layers can be neglected. In other words, the
layer is considered as an infinitely thick substrate, and
only the waves with Imu; > 0 are taken into consider-
ation.

Since the attenuation depth of X-ray waves in the
crystal in surface diffraction is essentially dependent on
angles ®, and ®,, the number of the layers that should
be taken into account varies from point to point on the
diffraction curve (the figure). Therefore, the above sug-
gested procedure can be called the dynamical thick-
crystal approximation.

The figure shows the curves of surface diffraction
from the AlAs/GaAs superstructures calculated by
the matrix method in the dynamical thick-crystal
approximation. The calculational parameters are (220)
reflection, CuK, radiation, m-polarization, and y =0.
The substrate parameters are a GaAs crystal, the super-
structure consisting of twenty (70 A AlAs + 150 A GaAs)
periods. The figure (a and b) shows the diffraction
curves at the incidence angles @, = 10’ (the figure, a)
and @, = 20’ (the figure, b). The figures (c and d) shows
the respective curves depending on the numbers of lay-
ers taken into account in the dynamical calculations.

It is seen that, on the whole, the suggested method
correctly represents the surface diffraction pattern from
the superlattice, i.e., the location of the peaks of Bragg
reflections of various orders from a periodic layer
structure (see, e.g., [6, 7]). If the incidence angle is
&, = 10’ (the penetration depth of X-rays is small), no
more than 8 to 18 layers from the total 41 are taken into -
account. Therefore, the Bragg peaks from the superlat-
tice at this angle are weakly marked. If ®, = 20’, the
reflections from all the superlattice layers should be
taken into account along virtually the entire diffraction
curve, and we observe bright Bragg peaks.

The figure (a and b) shows the diffraction curves
calculated for different thresholds (105, 10'3, and 10'%)
of the thick-crystal approximation with a computer
accuracy of 18 significant digits. It is seen that
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(a, b) The curves of surface X-ray diffraction from the superlattice consisting of twenty (70 A AlAs + 50 A GaAs) periods calculated
by the matrix method, and (c, d) the diagrams illustrating the choice of the number of reflecting layers for dynamical calculations.
Angles of incidence (a, c) 10’ and (b, d) 20’. Solid lines correspond to 10'3 and 10'* thresholds of the thick-crystal approximation;

the dashed line corresponds to the threshold 10°.

the change of the threshold value by nine orders of
magnitude does not qualitatively change the computa-
tional result. Therefore, this method is rather stable.

Thus, I developed an algorithm for simulating surface
X-ray diffraction from superlattices and other multilayer
structures. Unlike the algorithm suggested earlier [3],
this algorithm is quite reliable for a large number of lay-
ers. In contrast to the algorithm suggested in [6], this
algorithm can be applied to layer structures having no
rigorous periodicity. In particular, the method allows one
to perform the calculations for arbitrary Xy(z), (), and
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S#(z) distributions, i.e., provides the description of vari-
ous inhomogeneities in superlattices. This makes the
suggested algorithm very promising for studying surface
structures by surface X-ray diffraction.
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