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Abstract. A method is presented for the computation of x-ray grazing-incidence
diffraction in multilayers with lateral lattice mismatch. This method is based on the
dynamical diffraction theory and on a matrix form of boundary conditions.
Numerical examples are given to prove the validity of the theory. In prasent form
the algorithm can be used for computing grazing-incidence diffraction by completely
relaxed superlattices. The possibilities of extending this method to partially retaxed

multilayers are discussed.

1. Infroduction

In recent years, interest in studies of semiconductor
superlattices (SL) and multilayers (ML) has grown. X-
ray diffraction has proved to be a powerful technique for
these studies since it can provide direct data on structural
perfection, relaxation phenomena, and various defects
in MLs (see, [1,2] and references therein). However,
conventional x-ray diffraction methods sometimes fail for
thin MLs because of known drawbacks: (i) the structural
information is averaged over a depth of about 1 pm, which
often exceeds the thickness of the ML, (ii} the signal from
thin MLs is very smail compared with the signal from the
substrate due to the great penetration depth of x-rays; (iii)
the measurements basically give the variations of lattice
spacing perpendicular to the surface, whereas the stress
relaxations in MLs take place in the lateral direction.

Al these drawbacks have recently been overcome
with the development of grazing-incidence x-ray diffraction
(GID). GID provides information on surface layers as
thin as 1-100 nm; the information is depth-selective
depending on the incidence angle and the lateral strains
are measured directly [3,4]. Using GID, one can also
study the degree of crystalline disorder (amorphization) and
interfacial roughness [3, 6].

Unfortunately, there have not been so many applica-
tions of GID [3,7-15]. Two factors impede these appli-
cations: the high losses of intensity because of double-
plane x-ray collimation and grazing incidence and the lack
of general theoretical models for quantitative data analy-
gis. Due to the former factor, the experiments basically
require synchrotron radiation and the resolution of mea-
surements has been relatively low. The majority of ex-
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periments has been concerned with unrelaxed GaAs/AlAs
superlattices and other structures exhibiting no lattice mis-
fits [9-11,13,14], Only a few experimenis [3,7, 8] have
studied the effect of stress relaxation and the resolution
with respect to Aa/a was no better than about 1%. The
theoretical problems with GID have been due to the fact
that the Takagi-Taupin equations {16, 17] commonly used
for data analysis in x-ray diffraction are not applicable to
GID. The wavefield amplitudes in GID vary with depth
at length scales of about 1-10 nm (by a factor of 10°
shorter than in usual x-ray diffraction) and one cannot ne-
glect the second-order derivatives of these amplitudes, as
in the Takagi-Taupin approach. This probiem has recently
been overcome by the development of a matrix approach
to GID [6,13, 14, 18].

There is a significant difference in the effects of
normal (vertical) and lateral lattice mismatch in MLs. The
vertical lattice mismatch over a wide range does not cause
structure defects, whereas the appearance of a lateral lattice
mismatch is generally related to misfit dislocations or to
the formation of 3D domains [7,8,15]. Here, SIMOX
(silicon-on-insulator formed by oxygen ion implantation)
structures [19, 20] are an exception due to the presence of an
amorphous buffer between the layers with different lateral
lattice spacing [21]. However, lateral strains always cause
a discontinuity of the Bragg planes. The matrix dynamical
diffraction theory of GID by MLs with vertical variation
of lattice spacing was given in [18], whereas in the case
of lateral strains only a few works are available for very
simple bicrystal structures [22-25]. The complexity of the
problem was sometimes the origin of false suggestions that
the exit angle @, of the diffracted waves in GID could
directly give the lattice mismatch [25].
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Figure 1. A schematic view of GID in the case of a

superlattice consisting of two different components with
mismatched lattice parameters.

In this paper we extend the matrix theory of GID to
cases of lateral changes in crystal lattice spacing. As a
simplest case we consider a ML to consist of two types
of layers with different but constant lattice parameters,
Our model is applicable to several kinds of structures: (i)
samples like SIMOX ones [19,20] in which the difference
in the lattice spacings is accormodated without developing
misfit dislocations or 3D domains [21), or (ii) completely
relaxed two-component ML or SL systems with relatively
thick layers in which the contribution of scattering at strain
fields of misfit dislocations located near the interfaces can
be neglected, compared to the scattering at the other parts
of the layers. Our approach is based on the dynamical
diffraction theory which is stongly suggested by the
permanently increasing quality of MLs. The theoretical
model is illustrated by several numerical examples. The
limitations and possible extensions of the theory are also
discussed when these examples are analysed.

2. Theory

In the case of large enough lateral mismatches the
calculation of diffraction curves does not pose any serious
problems because the diffraction processes on mismatched
structures are separated [22]. The situation changes
dramatically as soon as the splitting of GID Bragg peaks
due to lateral lattice mismatch Aay/a becomes comparable
with the halfwidth of these peaks. In this case the incident
wave 1s very close to the Bragg condition for every layer
and one cannot solve the dynamical diffraction problem
separately for each layer because of the interference effects
that have to be taken into account, First attempts to
solve this problem for bicrystals were undertaken in {23];
the authors, however, did not succeed in the numerical
implementation of their scheme.

Let us consider GID in a muliilayered structure that
consists of N layers with two different lattice spacings:
some of the layers are characterized by the reciprocal fattice
vector by and the others have the vector by (figure 1). For
simplicity, we suggest k1, = hy, and hyy £ hy.

If the dynamical diffraction approach is applied, the
incident and diffracted x-ray waves in each layer are
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connected with the dynamical diffraction equations at
vectors by or hs. The boundary conditions at interfaces in
multilayers require the preservation of lateral components
of x-ray wavevectors in different layers. This requirement
can only be met by expanding the wavefields into an
infinite series of plane waves with respect to the difference
Ah = hy — hy. Then the wavefields in vacuum, in hy and
in fp layers can be written as

E*(r) = EgexplikgPoz) exp(iro )
oQ
+ 3 {E™ exp(~ikod{™z) expli(rio + mAh)p)

m=—

+E™ exp(—iko®y" 2} expli(ro + by + mAR)p]}
o0 4
DRy = Y > Dk explitouls)

Mm==00 Ji=]
x expli(ko; + mAh)p) + D;:}'m exp[ifco(u;’,’n + )z}
x expli(kor + Ry + mAR)p]}

o3 4
Dh(ry= 3" > IDJ, explikou}iz)
m=—0C j=|
x expli(koz + mAR)p] + D}, expliro(uly, + ¥")2)
x expli(koz + hy + mAR)pl}. 1)

In the following, a set of waves with index m is called
a harmonic of mth-order. In equation (1), the parameters
Dg;_m and Dﬁ;‘..m are the transmitted and the diffracted wave
amplitudes in the hg-type layer; they are related to the
dynamical diffraction equations:

i 2 (m) fee
D% = Yim — @™ — Xo
wiam T

Ry e e
th DUj.m=Uj.mDOJ.m' (2‘)
]

Here uj’fn are the solutions to the dispersion equation:

(“?,’;,2 _ ¢§m)2 _xgk)[(u;l;: + wm)z _ q;,(:")z _ ng]=X}?k X,?k

3)
where the parameters x"*, x:" and x}:" are the Fourier
components of x-ray dielectric susceptibility, ¥ are the
angles between h; and the surface (see [14] for more
details), r = (p, z), p is the in-plane coordinate vector and
z is the coordinate along the internal surface normal; & and
Ky are the incident wavevector and its lateral component in
vacuum, respectively; Eﬂ) are the amplitudes of the waves
of the mth harmonic in vacuum; $y is the incidence angle
and d)if? are the exit angles for the specularly reflected
(s) and the diffracted (#) m-waves in vacuum. For these
angles the following equations can be found [23] due to
the preservation of Iateral components of the wavevectors
at interfaces:

2
Q);tm) = ($y + !ﬂk')2 — oy, — mAay

™ = @ — mAg,
Ac = [(ro + ARy)? — K3i/KE
Agyp = Ao + 2R Ah"/fc§ )

and &y, = [(ko1+hi)*—k3,1/k% is the parameter describing
the deviation of the incident wave from the exact Bragg
condition for the % ;-type layer.
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Figure 2. The multiwave reflection process in a bicrystal. 'bc’ means boundary
conditions and the transitions ki’ and ‘£hy’ denote the relations by means of the

dynamical diffraction equations.

As follows from equation (4), instead of a single
diffracted wave and a single reflected wave, our model
gives two fans of the waves E{™ and E\™, with every wave
Jeaving the crystal with its own exit angle ®¢™ and ¢'™,
respectively. These vacuum waves by way of boundary
conditions are connected with the set of waves D 142 inside
the ML.

From the physical point of view, the above model can
be interpreted as the appearance of multiwave refiections
which have their origin in the incident wave Ey. The
harmonics formation process is illustrated in figure 2 for
the simplest case of structure consisting of two layers
only with reciprocal-lattice vectors h, and ha. Here ‘be’
means boundary conditions for given amplitudes; ‘&7’ and
‘thy’ mean the relations between amplitudes through the
dynamical diffraction equations (2). The process develops
as follows. The incident wave Eg excites the transmitted
waves D{,‘}.o and Dy;, in the film and in the substrate,
respectively. These waves give rise to the diffracted
waves D,{,_o and Dj;, with the wavevectors xg + R
in the film and kg + h: in the substrate. The waves
D,{j_u penetrating in turn into the substrate experience
the Bragg diffraction at vector —h2 and give rise to the
waves Df,j__l of the —1th harmonic with the waveveciors
kg + hy — hy = Ky — Ah directed along the direction
of propagation of the transmitted and specularly reflected
waves. Furthermore, these waves generate the waves
D;; _, with the wavevectors o + by — Ah due to the
dynammal diffraction process in the substrate, and so on.
The same process occurs in the left branch of figure 2.
Obviously, the multiple scattering is possible only in the
case of strong Bragg diffraction of afl harmonics and takes
place in close proximity to the Bragg peaks, which requires
the application of the dynamical diffraction theory.

Assuming that all the layers are crystalline, the
boundary conditions for the wavefields and their derivatives
at the bounds vacuum~#-type layer, k;-type layer—h-type
layer and hp-type layer—h;-type layer can be writien as
follows:

4
SmoEo + EM™ = Z D_:’,;,
=

( hy k
m) ZDJ;tﬂL
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j=1
where m}'* = f‘* (u'”‘ W) and z; are interface
coordmates, D"”‘ = ngm and Dﬂjm are expressed through
D0 i by (2); 6 o 15 the Kronecker symbol; P = 2 for the

last layer in the SL {substrate), and P = 4 for the other
layers (see the thick-crystal approximation in [14]).

The boundary conditions (5) give rise to mixing of
the neighbouring harimonics on the bounds of layers with



different lateral components of the reciprocal-lattice vector.
This is the reason why we cannot find the field amplitudes
E™ and EI™ separately for every harmonic m and have to
solve simultaneously the infinite sysiem of related equations
for an infinite number of harmonics. However, proceeding
from general physical considerations, it is clear that the
intensity loss process occurs with every reflection (figure 2).
This fact enables us to neglect the higher order harmonics
because of their low contribution to the intensity and we
can cut off the harmonics spreading process.

For the practical implementation of this algorithm one
has to find the central harmonic in terms of a maximum
contribution to intensity and to determine how many
harmonics should be taken into account in the positive
and negative directions from the central one, The answer
to the first question is simple: either zeroth- or first-
order-harmonics are always central, representing the direct
diffraction on k- or ka-type layers, respectively.

The choice of the number of harmonics taken into
.account in both directions proceeds from the following
condition:

o = loy, £ m* Ay} > 1 6)
where m™ are the number of negative and positive
harmonics. The condition of a large deviation from the
Bragg condition (a* » 1) is adequately satisfied in practice
when o= > 5.

Using the above approximations, the boundary
conditions (5) for the finite number of harmonics M =
m* 4+ m™ can be rewritten in a more convenient matrix
form [14):

SYE? = Siy, D'
Sy P! = Sip, D
Sty D* = Sy, D?
Sy DV7! = s, DV, o

Matrices Sfu. £y on the upper (') and lower (L)} bounds for
the h;-type layer are presented in a block-structure:

[l _ )

—m

—m~ + 1

(8}

\ ™)
where the indices in the blocks mean that the block elements
belong to the mth harmonic. Every mth block consists of
the following matrix (we drop the indices £, and (¢/, L) in
the matrix elements}):

eim) eém) e:gm) eim)
V(m) Vztm) Vsth V4(m)
A oy
Wl(m} W‘;J(M) Wém] W‘:m)

%)

Diffraction by multilayers with lateral misfits

The matrix block-structure for the ha-type layer is quite
different due to the mixing of harmonics:

( -m~ —1, —m‘l \
I—m", -m~ +1

mt -2, mT -1

mt —1,mt
\ /
(10)
and the rectangular blocks are
0 0 0 0 ™ P g™ M

A Al VAU A S | S I 1
0 o6 90 0 uvHumumy

(11)
Here the following notations are used:
efm) = exp(itjmkozw,1y) U J-('”) = ujme}"’)
me) = Ujmeﬁm} Wj(m) = wjme_;M)' (12)

The values v, u, and ¢ in the matrices (9) and
(11) are correspondingly evaluated for k;-type and ha-type
layers. D¥ is the vector of 4M size for the A;-type layer
and of 4M + 4 size for the &z-type layer:

& k
D* = (..., Dt puers Dot Dea 1> Dfama—ts Dbtm»
D 1+ Dms Dlpums - )+ (13)

The left-hand side in the first equation in (7) can be
represented as follows:

SvEu = Svawn -+ EO

where the matrix S is a block-constructed one of size
(A0 x 2M:

(14)
m+
\ /
and the mih block is represented as
1 0
0 1
—pim) 0 . (15)
0 —im
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The vectors E¥ and E° are
E' = (.., E»D Em-D M E,E"f), )

E°=(..,[Eo=1,0,¥pE,0],...). (16)

The block [. . .] in (16) is placed where the zeroth harmonic
OCCUrs.

It is evident from (5) that the matrices Sf, ;, for &;-
type layers have the dimension (4M x 4M) and the number
of fields under consideration is equal to 4M. For Ap-
type layers we have 4M 4 4 fields (due to mixing of
harmonics) and consequently the size of the matrices Sfu. L
for layers of this type is (4M x 4M + 4). For a successful
use of the matrix approach, it is necessary to match the
number of variables with the number of equations. For this
purpose, we use the amorphous layer approximation for the
boundary harmonios. We cut off the process of harmonics
multiplication in the ha-type layer, so that only the two
last transmitted fields ng._m* for the positive boundary
harmonic and the two last diffracted fields D:}__m_ for the
negative boundary harmonic remain. This means that all the
higher order waves do not undergo the diffraction process
in the crystalline structure and, instead, propagate as waves
in an amorphous layer. Thus, using the above procedure
we have obtained 2 set of boundary conditions at every
interface consisting of 4M equations.

Now, using the procedure developed in [14] and
taking into account the fact that the substrate matrix is
of size (4M x 2M) due to the dynamical thick-crystal
approximation, [14] we obtain

TDN — Sm pym EO (17)

with
T = Sl (Siry) ™ Shn (5, ... 8Ty, (18)
Equation {17} is the system of 4M equations for 4M
variables E{™, EX™, DY, and DY i m = [—m™...m*),

The solution to this system provides us with a set of field
amplitudes Ef™ and E in vacuum for the diffracted and
the specularly reflected wave fans. The equations relating
the intensities to the field amplitudes and the exit angles
®™ are well known [18]. _

Let us consider now the limiting cases of our model
at Aag/a — oo and Agj/a — 0. In the first case,
the algorithm is reduced to the two-beam case of separate
diffractions on layers with different lattice spacings. In
the second case the application of our model is restricted
because of the infinitely increasing number of harmonics
which cannot be implemented numerically. This increase
corresponds to a degeneration of the basis of our expansion
in terms of exp(Ahr). The condition for the applicability
of the model is

M) Ao} 3> 1xx (19)

where M is the maximum number of harmonics taken in
the computer program. The condition (19) means the width
of our expansion exceeds the halfwidth of Bragg peaks. In
the majority of cases (19) gives Aqy/a = 1075,
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Figure 3. The variation of GID curves from a bicrystal in
terms of their dependence on the mismatch parameter
Aay/a. The curves (a) are calculated in the framework of
the model presented and the set of curves {b) is calculated
assuming an independent diffraction process in every
component of the bicrystal. The parameters of the
calculations are given in the text.

3. Numerical examples and discussion

Diffraction curves for a bicrystal with two laterally
mismatched lattice parameters were computed in two
different ways. Figure 3 shows the set of diffraction curves
for ®-scans in terms of their dependence on the parameter
Aay/fa, thus describing the effect of lateral lattice strain
on GID. The calculations were carried out for a structure
consisting of a GaAs film (thickness 14.6 nm) being grown
on GaAs J001] substrate. The lattice parameters of the
film and the substrate were supposed to be mismatched
by Aay. The other input data were: (220) Bragg planes,
o-polarization, x-ray wavelength A = 0.154 nm and the
incidence angle ®; = 0.6°. Figure 3(b) demonstrates
the diffraction curves calculated under the assumption of
independent diffraction in both layers. In this case the
dynamical diffraction problem is solved for every laver
separately and not with respect to Aaj/a. Figure 3(a)
represents the same diffraction curves calculated by the
method described in section 2, namely with respect to
interference effects during the Bragg diffraction in the
bicrystal. As seen in figure 3, there are considerable
differences in the diffracted beam intensities within the
region of small Agy/a, for which the Bragg condition is
nearly satisfied for both layers. Figure 4 shows the section
of figure 3 at Aay/a = 10™%. The ratio of the Bragg
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Figure 4. The sections from 3D curves of figure 3,
representing the appearance of an additional peak at small
Agy/a=1x 107 in our model.

peak intensities in our model is opposite to that of the two-
wave model, and an additional interference peak between
the main Bragg peaks for film and substrate appears in our
calculations.

Figure 5 demonstrates the ¢, scans for a SL, consisting
of 20 periods of thin GaAs and AlAs layers on a GaAs
[001] substrate, The thickness of the layers in the SL is
14.6 nm of AlAs and 6.8 nm of GaAs. The calculations
were carried out with the following input data: the beam
incidence angle ®p = §.35°, the Bragg planes were
(220), the miscut angle of the surface with respect to the
(001) plane was ¥"* = —0.03° and the x-ray wavelength
A = 0.154 nm. This structure was analysed earlier in a
number of papers [14,26]. Curves 5(a) and (d) present
the limiting cases of our model. First, one can compare
the diffraction curve calculdted by our program (circles)
for a greatly mismatched AlAs lattice (Aap/a = 1072) and
the diffraction curve calculated for the SL, when assuming
independent diffraction in both components of the SL. The
latter assumption implies that, in turn, one of two kinds of
layers is treated as being amorphous due to weak diffraction
and then the intensities are added. No interference effects
are displayed by our model. Figure 5(d) illustrates the limit
of Agjfa = 0, namely a completely unrelaxed structure.
The curve is calculated according to [18] and our theory is
not presented since it is degenerated according to equation
(19). However, the curves in figures 5(b) and (¢} calculated
according to our theory for Agy/a = 107% and 107,
respectively, exhibit the transformation of the shape with
decreasing Agp/a from the case in figure 5(a) to that in
figure 5(d). One can see that the shape of these @, scans
is clearly sensitive to the value of the lattice mismatch,

Thus, we can conclude that in the limiting case
Aayfa — oo our model is reduced to the two-wave
scattering scheme used in experimental data analysis of
GID. The advantage of the proposed model is that it is
possible to simulate structures with a lateral lattice misfit
over a wide range of Ag)/a.

As follows from the given examples, the sensitivity of
the GID method with respect to the lateral lattice mismatch

Diffraction by multilayers with lateral misfits

a
5,
g 103 4
>
‘w
o
5
E 10
-2
Aa/fa =10
b
10-3.
10—4.
-3
Aafa =10
c
10
10"
Aafa = 10
d
108
10
Agfa =0
0 1 2
%y, degrees

Figure 5. Theoretical calculations of ¢, scans from a
GaAs/AlAs superlattice for different Aay/a: {a) 10-2, (b
10-2, {¢) 10~* and (d) 0. In {(2) our model is presented by
circles and the full line corresponds to the two-wave
approximation, which assumes independent diffraction in
both supettattice components. In {d) our model is
degenerated and the full line corresponds to two-beam
diffraction by a completely maiched structure.

is up to two orders of magnitude greater than that of
conventional high-resolution x-ray diffractometry. This
fact is due to the special shape of Bragg peaks in GID:
they are different from the Darwin curve and can exhibit
a very sharp maximum of halfwidth about || whereas
the halfwidth of the whole peak is about |}, as usually.
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The ratio |xxi /xn-| = 1072 causes the variations in the fine
structure of the Bragg peaks due to minor deviations in
the lattice spacing and makes it possible to apply GID to
investigations of the initial stages of relaxation in strained
SLs and buried doped layer structures. However, up to
now the application of the GID has been restricted to fully
pseudomorphic heterostructures because of conceptional
restrictions of computation models. These seem to have
been overcome with the help of the method presented in this
paper. We believe that our theoretical results will stimulate
new applications of high-resolution GID experiments.

The theory given in the present form can be used
for calculating GID from completely (uniformly) relaxed
superlattices. However, our model can be easily extended
from one Ak = h; — hy to the systemn that possesses a
set of Ah: Ak — (Ah,2Ah,3Ah,...). This extension
provides the opportunity to model Ah profiles along
the z- direction. The grazing-incidence diffraction from
partially relaxed structures can be simulated with such an
advanced model. The interface rounghness effects can also
be easily added to our model by analogy with [6]. Finally,
the wavefields obtained by the developed scheme can be
applied to calculating the x-ray scattering at strain fields
produced by misfit dislocations near interfaces. In the
case of a distance between dislocations much less than the
thickness of layers, a°/Aa < t, these strain fields can
be treated as a periurbation to our model and the distorted
wave Born approximation (DWBA) method [26-29] can be
used. For Aa/a =~ 107! this estimation gives 7 3> 5 nm.
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