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Abstract

The peaks in X-ray diffuse scattering associated with the diffraction of the incident or scattered waves from a periodically
layered structure are investigated analytically and compared with numerical calculations. It is shown that if the roughness of
the periodic interfaces is uncorrelated, the peaks follow the intensity of the X-ray standing wave at the interfaces. Interference
effects due to correlated interfacial roughness can change the sense of the peak (sequence of maximum and minimum). The
factors controlling the peak sense are derived and applied to explain the results of numerical calculations.

1. Introduction

X-ray diffuse scattering has proven to be an informative
and non-destructive tool applicable to studies of roughness
of surfaces and interfaces in at least five fields of application:
semiconductor multilayers for advanced electronic devices
[1-5], multilayers fabricated for use as optical elements for
soft X-rays [6—12], epitaxial film growth [13-15], thermal
fluctuations of liquid surfaces and fluid films [16-19], or-
ganic multilayers on solid substrates (Langmuir—Blodgett
films) [20] (see also the review Ref. [21]).

An essential feature of diffuse scattering from multilayer
systems is the sensitivity to correlations between the rough-
nesses of interfaces. This effect is especially pronounced in
periodic multilayers. When the roughness of periodic in-
terfaces is correlated, diffuse intensity is concentrated on
equidistantly spaced sheets in the reciprocal space. This ef-
fect has been observed and then explained almost simulta-
neously on different multilayer systems (to the best of our
knowledge, the effect was first pointed out in theoretical
studies by Andreev et al. [22] but remained unclaimed and
rediscovered in the experimental studies cited above). All
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experimental studies report that the roughness of different
interfaces is correlated, at least partially.

Additional singularities in the diffuse scattering spectra
are observed when either the incident or scattered beam oc-
curs in Bragg diffraction conditions due to the periodicity
of multilayer. The shape of these singularities can be es-
pecially sensitive to an asymmetry between B/A and A/B
interfaces in periodic multilayers [23]. It has been claimed,
without proof, that the intensity distribution in Bragg sin-
gularities follows the standing wave intensity at interfaces
[8, 24]. The aim of this paper is to investigate the forma-
tion of these singularities and their sensitivity to interlayer
roughness correlations by means of analytical estimations
compared with numerical calculations. We show that the
Bragg-diffraction peaks in diffuse scattering follow exactly
the standing wave distribution only if the roughness of dif-
ferent interfaces is purely uncorrelated. We demonstrate that
in presence of correlations the sense of the peaks (i.e., the
sequence of maxima and minima) can be opposite, and de-
rive a factor controlling it.

2. The reciprocity theorem

The most effective way to calculate the intensity of X-ray
diffuse scattering is to apply the reciprocity theorem. Its
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formulation employed by Sinha et al. [25] and frequently
referred to is based on the quantum mechanical theorem
and uses the terminology of “time-reversed states” which in
practical application can be confusing for X-ray scattering
problems. A more direct way is to use the reciprocity the-
orem of electrodynamics. For the first time it was applied
to the problems of X-ray diffraction by Laue [26] for anal-
ysis of distribution of X-rays scattered by atoms in crystals
(Kossel lines). In the derivation below we follow the paper
[27] by one of us.

Consider plane wave e exp (ikor) illuminating a scat-
tering object (crystal, multilayer, etc.). Its scattering from
an “ideal” object containing no fluctuations and possessing
the polarizability ya(r) gives rise to the coherent wave
field E™(r) inside the object whose explicit form can be
found as a solution to the corresponding problem of X-ray
optics, taking into account refraction, diffraction, and re-
flection phenomena. The fluctuations of polarizability cause
a perturbation dy(r) = x(r) — yia(r) and give rise to the
additional current j, = —(iw/4m)8yE™ entering Maxwell
equations. The radiation field of this current far from the
scattering object is E; = (f/r)eiexp (ikr), where f =
f(ey, ki, ey, ko) is the scattering amplitude to be found. It
describes the scattering of the incident wave with the wave
vector ko and polarization ey into the wave with the wave
vector ki and polarization e, and k = |ko| = |k1].

To determine the scattering amplitude, let us make use
of the reciprocity theorem of electrodynamics [28] which
relates the electric fields E and E’ due to the two arbitrary
currents j and j' by the equality [ Ej'dV= [ E’jdV. In
addition to the field E, of the current j, we introduce the
field E°** of the current j*, which can be chosen arbitrarily.
The reciprocity theorem gives

/E"“‘jldV = /Elj"“‘dV (1)

Integration in Eq. (1) is performed over the regions where
the currents j, and j** are non-zero. Let us choose the cur-
rent j as j*'(r) = —(iw/k*)R e} exp (ikr)3(r — R) in the
observation point R disposed far from the scattered object.
This current produces a plane wave e} exp (—ik;r) illumi-
nating the object. The field E® in the object due to this
current is the solution to the problem of X-ray optics for
the “reversed” scattered wave e} exp (—ik;r). Then Eq. (1)
gives the scattering amplitude

f = (K /4m) / E*(r)8y(r)E™(r)dV. (2)

The reciprocity theorem has allowed us to reduce the prob-
lem of determining the radiation field of the current disposed
inside the scattering object to the well-known problem of
X-ray optics of ideal (non-fluctuating) system. Eq. (2) does
not involve any complex conjugation or “time inversion”,

and both wave fields, E™ and E°, are absorbed when
propagating into the object. Eq. (2) is applicable in case of
arbitrary anisotropic absorbing non-uniform media. If the
perturbation of polarizability 6y(¥) is time-dependent, the
wave fields E™ and E°" possess different frequencies, thus
describing inelastic scattering (the undisturbed polarizabil-
ity xia(r) is considered to be time-independent in order to
ensure the applicability of the reciprocity theorem). Ap-
proximation (2) is commonly referred to as the distorted
wave born approximation (DWBA). Far from the regions of
diffraction or reflection the waves E"™ and E°" tend to plane
waves, E" = ejexp(iK"r) and E°" = e} exp (iK*"r),
where K™ and K*" are the wave vectors inside the medium
that differ from corresponding vacuum waves ko and —k;
due to refraction. The scattering amplitude (2) reduces to

f=E /s 0), Q=—(K"+K"), 3)

with 8x( Q) being the Fourier transform of 8y(r). When the
refraction can be neglected, the wave-vector transfer @ in-
side the medium is reduced to the vacuum wave-vector trans-
fer ¢ = ki — ko. Thus, Eq. (3) is the refraction-corrected
first Born approximation. Hereafter, we do not consider po-
larization phenomena and write Eq. (3) for an eigen polar-
ization (¢ or m). We stress that, by definition of the wave
fields E™ and E°", both wave vectors K™ and K" are di-
rected inside the medium and K°" =~ —k,, when refraction
is neglected. The mean value (3y(Q)) of the fluctuating part
of polarizability contributes to the coherent scattering and
the deviation

81(Q) = 81(Q) — (3x(Q)) 4)

gives rise to diffuse scattering.

3. Diffuse scattering on periodic rough interfaces

The periodicity of the scattering object gives rise to sin-
gularities in diffuse scattering distribution. In this section we
consider the features of the diffuse scattering according to
the Born approximation (3). It is applicable if the incidence
and exit angles are large compared with the critical angle
for total external reflection and do not coincide with any
Bragg angle due to periodic structure. In fact, these restric-
tions leave the Born approximation applicable to the major
part of diffuse scattering distribution. The Born approxima-
tion for the differential cross section of diffuse scattering due
to rough interfaces between layers is

do/dQ = (kK /4m)’ 3 (1 ()37 (Q)), (5)
Ik

where summation is performed over the interfaces. When
calculating the Fourier transform of the polarizability fluc-
tuations 8y;(Q) on jth interface, it is convenient to shift the
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origin to the mean interface position z;, which gives rise to
the phase term exp (—iQ:z;). Then, the correlations of po-
larizability fluctuations on different interfaces can be repre-
sented as

(Sr(0N31(Dy)) = AgyAyx exp [—i(Q1:2; — O5:2)]
X Cip(Qhzs Q2zs 44 ) (6)

Here Ay; is the polarizability jump at jth interface and
Cix(Q1z, 02, ¢ ) is a correlation function, the explicit form
of which depends on the model of roughness. We discuss
it in Section 5. Although in the Born approximation (5)
the correlations of polarizability fluctuations are required
for Q1. = Q2. = Q. only, a more general formula (6) will
be helpful in further analysis. The component ¢, in the
plane of the layers is the same for all wave vectors of the
problem, due to the translational invariance in that plane.
Cj is a smooth function of its variables. In the simplest
case of roughness caused by small random displacements
u;(p) of interfaces, so that Q? (u7) < 1, it is reduced to the
two-dimensional Fourier transform of the function Cy(p) =
{u;(p)ux(0)) and does not depend on Q1. and s, see Sec-
tion 5.

Two limiting cases of interface—interface roughness cor-
relations are uncorrelated roughness, Cjx = C;8, and com-
pletely correlated roughness, Cjx = C. Consider a slab of N
periods of thickness D = d| + d>, each period consisting of
two layers with thicknesses d and d» and polarizabilities 1
and y2, respectively. One has to take into account that the
polarizability jump at jth interface Ay, has an opposite sign
on neighboring interfaces: Ay, = (—1)/ Ay, where Ay =
42 — y1. For uncorrelated roughness, one readily obtains

do/dQ = (K’ Ay/4n)’ Y Ci(Q:, Os q,)- (7
J

Eq. (7) describes a smooth distribution of intensity. For
completely correlated roughness the substitution of Eq. (6)
into Eq. (5) gives

2 2
g% - (% ) C(Q-, 0:» 4, )sin’ %dﬁz(gz), (8)
where
_ sin(Q:ND/2)
PG = sin (0:D/2) )

The number of layers is supposed to be large enough, so
that the contributions of surface and the interface between
the substrate and multilayer can be taken equal to that of
interfaces in multilayer. The behavior of function *(0.)
is well known: it possesses equidistantly spaced maxima at
Q. = 2nm/D (where m is an integer), the height of which
is N? and the width is proportional to N ™', Thus, the inten-
sity of the diffuse scattering concentrates on the sheets Q. =

2nm/D, as a result of interference between waves diffusely
scattered at different interfaces. This effect of resonant dif-
fuse scattering (RDS) has been observed and explained for
several multilayer systems [1, 2, 4, 610, 12, 21].

4. Bragg-diffraction peaks in diffuse scattering
4.1. Cross-section of diffuse scattering

When either incident or scattered waves occur in Bragg-
diffraction conditions, the corresponding wave is no longer a
plane wave and the Born approximation (3) is not valid. The
diffracted wave has to be taken into account. The diffraction
process close to a diffraction vector H = 2rm/D can be
considered as a scattering from the corresponding Fourier
component of polarizability of the periodic system

4 . .
AH = EAxexp(—lHah/Z)s1n(Hd1/2). (10)

The phase factor exp (—iHd/2) arises due to the distance
z = dy/2 of the symmetry plane of multilayer “unit cell”
from the origin z = 0 chosen at the multilayer surface. Dy-
namical diffraction effects are governed by the ratio of the
extinction length Ay = 2sin 6/(k|yx|) for the correspond-
ing Bragg reflection to the thickness L = ND of multilayer.
The extinction length increases systematically with the re-
flection order due to an increase in the incidence angle 0
as well as a decrease in yy. As a result, in most practical
cases, it is larger than the multilayer thickness for m > 1.
This conclusion follows also from the experimental curves
of specular reflectivity, see e.g. Ref. [4, 6, 7, 10, 21]: the re-
flectivity at Bragg maxima occurs much smaller than unity
with the exception of the first Bragg peak. Then the kine-
matical approximation can be applied to determine the wave
fields E™ and E°. Under kinematical diffraction condi-
tions, the diffraction peak intensity is proportional to || ~
m ™2 sin® (nmd, /D), giving rise to a systematic intensity de-
crease with the diffraction order as m ~2 and additional dump-
ing of some peaks when md /D is close to an integer value.
We note that the same term sin® (Qd,/2) governs the inten-
sity of the RDS sheets in Eq. (8). Thus, the RDS peaks in
diffuse scattering are dumped simultaneously with the cor-
responding specular reflectivity peaks.

The Bragg-diffraction condition for a given reciprocal lat-
tice vector H is satisfied for the incident wave along a line
in the scattering plane (gy, ¢:). This line intersects the lines
where the Bragg-diffraction condition is satisfied for scat-
tered wave with reciprocal vectors H'. Generally speaking,
the diffraction of both incident and scattered waves should be
taken into account at the intersections. However, the system-
atic decrease in kinematic diffraction proportional to H >
gives rise to considerably different contributions from two
processes for H # H' (the lines with H = H' intersect at
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the position of specularly reflected beam). For this reason,
we restrict ourselves to the diffraction of either incident or
scattered waves. Simultaneous diffraction of both waves can
be essential in case of dumping of one of the waves men-
tioned above and leads to overlapping of two singularities.

Let us for the sake of definiteness assume that Bragg
diffraction conditions are satisfied for the incident wave. The
solution of the two-wave dynamical diffraction problem (in-
volving only one diffraction vector H)) for the ideal periodic
structure is well known [29]. Its kinematical limit at L <
/11-1 is

XH

E™r) = expiK™r) + T &P (K™ + Hyr|
H
1 .
XQAHK {1 —exp[2ik(L — z)]}. (11)

Here k = (K™ — K}'). is the projection of the wave-vector
deviation from the Bragg condition on z-axis directed nor-
mally to the interfaces.

Approximation (11) does not restrict possible values of
K, so that the phase factor in the last term generally is not
small. In the limit ¥ — 0, the wave field in the origin ¥ = 0,
chosen at the entrance surface of the structure, is E™(0) =
1 —ikygL/(2sin 0). 1t is proportional to y; and the slab
thickness L. This limiting case can be derived in the simplest
approximation of quantum mechanical perturbation theory.
To derive general expression (11), one can employ the per-
turbation theory applicable in the case of large energies [30].
In the limit k > A;‘, the second term decreases as k', as
it should be in the kinematical approximation. The second
term on the right-hand side of Eq. (11) remains small in
comparison with the first one due to the restriction L < Ay.

The two terms in wavy brackets can be treated as if they
are due to a direct diffraction at point » and reflection from
the bottom surface of the slab, respectively. Substituting Eq.
(11) into Eq. (2) and taking the reversed scattered wave as
a plane wave E° = exp (iK*"'r), one has

do K 2 / % ! 1H
i~ (4‘&) {<6x(Q>6x (D) + LR

x[(87'(Q — H)3y" (D))
—exp (2inL)(37/(Q — H + 25/ (Q))1}. (12)

The first term in Eq. (12) was obtained in the Born ap-
proximation (3) and the two other terms are due to the direct
diffraction of the incident wave and the wave scattered from
the bottom surface of the slab, respectively. By comparing
them with the result of the Born approximation, one can see
that they involve correlations between fluctuations of polar-
izability on two different wave vectors and thus, in principle,
contain more detailed information about correlations.

10 4

-10 4

10 05 00 05 10

Fig. 1. Function ¥(x) (Eq. (15)) controlling standing-wave-like ef-
fects in X-ray diffuse scattering from periodic multilayers. N = 20.

4.2. Uncorrelated roughness

Consider first uncorrelated roughness of the interfaces and
put Cy = C8j. Then, keeping in mind that x is small in
comparison with O, and H, and kd; < 1, one arrives at

d Ay \’
—dg =2N (—4nx> C(Q:, Q-, q )1 + g&Su¥P(xD)].
(13)

Here g = 4k*Ay/H?, and & = C(Q., Q. — H, 4 )/C(C,
O:, ¢ ) is a factor of the order of unity, and

Sy = sin(Hd) (14)

is a factor determining the sign and magnitude of the Bragg-
diffraction effect. The function

P(x) = x"'[1 — cos (N + 1)x)sin (Nx)/(N sin x)]  (15)

of the argument x = kD is presented in Fig. 1. Let us cal-
culate, for comparison, the total intensity of the wave field
E"™(r) on interfaces ¥; = (p,z;):

=3 |E™(p, )l =2N[1 + gSu.¥(xD)]. (16)
J

By comparing Egs. (13) and (16), one can conclude that the
diffuse scattering from multilayers with uncorrelated rough-
ness follows the intensity of the X-ray standing wave (16)
at the interfaces, differing from it only by slowly varying
factor £ ~ 1. The dispersion-like curve of Fig. 1 is typical
for a standing wave. We note that Eq. (16) is derived on the
basis of the kinematical approximation and Fig. 1 presents
a small additional contribution to the intensity of the trans-
mitted wave.
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4.3. Correlated roughness

Let us proceed now to the opposite limiting case of com-
pletely correlated roughness and put Cy = C in Eq. (12).
Then we obtain

2
2 (’%E‘-) P(0:)C(0-, 0 4,)
x {sin’ (Q=d1/2) + g&S. Pe(xD)}, an
where
Po(x) = (x) "' [1 = cos (N + 1)x) P(Q: — 2x)/D(0:)]
(18)
and

Se = sin (Hd1/2)sin [(Q: — H)d\/2]sin (Q.d1/2).  (19)

For the scan along a RDS maximum, Q: is equal to one
of the Bragg diffraction vectors 0. = G = 2nn/D, and the
function ¥.(xD) is reduced to ¥(xD). Then the second term
of Eq. (17) differs from that of Eq. (13) only by substitution
of S, for S,.

Two terms S, and S, can differ in sign and magnitude, de-
pending on the reciprocal-lattice vectors G and H. Thus, the
peaks due to uncorrelated and correlated interface roughness
can differ by magnitude and sense (sequence of maxima and
minima). We present some numerical examples in the next
section.

When k=0, i.e., for the scan over the exit angle while
keeping the incident wave at the Bragg position, one has
¥, =@ 2d($?)/dQ: and Eq. (17) reduces to *(Q: + 30:)
where 8Q; ~ gS.. Thus, the RDS peaks slightly shift when
the incident (or scattered) wave satisfies the Bragg condi-
tion.

4.4. Sensitivity to correlations

Let us now consider the transition between two limiting
cases of completely correlated and completely uncorrelated
roughness. It can be analytically shown that the qualitative
features of Bragg peaks are not sensitive to minor deviations
from completely correlated roughness. To demonstrate this,
let us take Q. = G and assume smooth variations of Cj with
j and k, so that for two interfaces belonging to one and the
same period of the multilayer Cjx =~ Cj11,4. One can then
proceed to a summation over the periods with the correlation
function C,,, and arrive at

do sz;¢>2{ ., Gdy N
— = sin® —— Coun(G, G, q )
dQ ( 21 2 %2";0 +

N—1
+9S:(kD)"" 3 Cuu(G,G — H,q )sin® k(L — zm)}.

m,n=0

(20)

The Bragg-diffraction peak is due to the second term of Eq.
(20). It involves a sum of positive terms, and the peak is an-
tisymmetric with respect to x, due to prefactor (xD)"'. The
sign of its contribution to the diffuse scattering cross sec-
tion is determined by the factor S¢. Thus, smoothly varying
correlations between interfaces give rise to qualitatively the
same shape of Bragg-diffraction peaks as completely cor-
related roughness of interfaces. However, the peaks due to
completely uncorrelated roughness are governed by another
factor, Sy, and follow the intensity of X-ray standing wave
at interfaces. One can expect a qualitative transition from
one extreme to the other in case of a fast decrease in corre-
lations with distance between interfaces, when the assump-
tions made at the beginning of this section are not valid. This
conclusion is confirmed by numerical calculations below.

5. Numerical calculations of diffuse scattering
5.1. Basic formulae

Although the approximate equations derived in the pre-
vious section are helpful for a qualitative analysis of dif-
fuse scattering, they are not accurate enough to calculate the
whole picture of diffuse scattering. In particular, they are not
applicable when the incident or scattered wave is close to
the region of total specular reflection. For an accurate evalu-
ation of diffuse scattering on the basis of the reciprocity the-
orem (2), one has to calculate the undisturbed wave fields
E™ and E° in each layer. They can be represented as a
sum of the transmitted (t) and reflected (r) waves:

B — Z Ef,fj) exp (iK;:,(/)V), (21)

m=t,r

where s = (in, out). The amplitudes E{ ) and E) and the
wave vectors K/ and K’ in jth layer can be found by
solving the boundary problem on each interface [31, 32].
Diffuse scattering is caused by non-ideal interfaces between
layers. Substituting wave fields (21) for Eq. (2), one finds
the contribution f; to the amplitude of diffuse scattering due
to jth interface as a sum of four terms

fj — % Z ZEZIMU)SX;(KZU‘(D +K;"(/))Eri’ﬂ(j). (22)

m=t,r n=t,r

In deriving Eq. (22), the wave field of jth layer was applied
to both parts of the interface between layers j and (j + 1).
This assumption can be crucial whenever we are close
to the total reflection region where the wave fields differ
essentially above and below the surface [25] but seems
appropriate for larger angles of incidence and exit, where
the wave fields vary only slightly at each interface and the
diffracted wave is formed due to scattering at a sufficiently
large number of interfaces. The differential cross section
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do/dQ2 = {| Z/J’,f) contains the sum of as large as 16
terms for each pair of the interfaces involving correlations
(8xi(0)) 81" (@,)) between polarizability fluctuations on
different interfaces [4, 18, 21]. Here Q, and @, are two
wave vectors from the set involved in Eq. (22).

A rough interface can be treated as a boundary between
two media with the polarizabilities Xg({ ) and Xi(a/ *1 randomly
displaced by u;(p) from the mean position z; of the inter-
face. Here p = (x, y) is a coordinate vector in the plane of
interface. Calculation of the correlation function is tedious
but straightforward and we point out to the main steps only
[4, 18, 21]. First, one has

R zi+u; () )
51(Q) = Axf/d p/ dzexp(-iQ’r)
Zj

iAy; o
= vl—Q;fi exp (—iQ/ z)
X/dzp exp (—ig , p){exp[—ig:u;(p)] — 1},

(23)

where Ay; = 1\ — 7/*". Further calculation of corre-
lation function (3x;(Q,)3x;"(@,)) involves the means
(exp [i((Q).u; — Q% w)]) which are calculated for Gaussian
random variables «; with the aid of general formula [33]
(exp (32, %)) = exp(5 D, oyou(xjx)), where o are
constants and x; are Gaussian random variables. Finally,
the correlation function can be represented in the form of
Eq. (6), where

Ci(Qrzr Orr q,) = exp [—(01}a} + 052 *a1)/2]

S
Q.04
x / d’p exp (—ig, p){exp [0}, 05 Hx(p)] — 1}, (24)

S is the scattering area, o7 = ([u;(p)]’) and Hj(p) =
(u;(0)ur(p)). We note here that the term exp [i(Q].z; —
0% zi)] of Eq. (6), which causes diffuse intensity to concen-
trate on the sheets in case of correlated roughness of peri-
odic interfaces, was omitted in the corresponding equation
of Ref. [4] and included implicitly in the amplitude terms.

In the case of small rms height of roughness ¢; or small
wave vector transfers Q:, so that ;0. < 1, Eq. (24) is sim-
plifiedto Cy(q | ) = A (q ), where A5 (q | ) is the Fourier
transform of £ (p).

5.2. Correlation functions
Now, we have to define an explicit form for the correla-

tion function (g | ) in Eq. (24). For j = k the correlation
functions are commonly taken, after Ref. [25], as

H(p) = (u(0)ui(p)) = o7 exp [—(p/E™], (25)

where ¢; and ¢; are the rms height and the lateral correlation
length of roughness at jth interface, and 3 — 4 is a fractal
dimension (0.5 <A<1).

For j# k there is a variety of suggestions, which
can be divided into models assuming non-accumulated
[2, 10, 34] and accumulated [4, 11] roughness. In the first
case, the correlations between interfaces are assumed to
depend on the distance between them. For example, in the
model by Ming et al. [2] the correlation function has the
form

Hj(P) = / A (P) Hu(p) exp (—|zj — zi|/Lvern)s  (26)

where &, is a vertical correlation length of roughness.
Usually, one takes 7, equal to each other, #,, = . The
correlations of interfacial roughness can vary between two
limits considered in Section 4, uncorrelated interface rough-
ness, Z(p) = A (P, at Everr — 0, and completely cor-
related (replicated) roughness, A (p) = A(p), at &yerr —
00.
Spiller et al. [11] suggested considering that the in-
terfaces are formed successively one after another, start-
ing with the substrate and with the layers repeating
long-wavelength modulations in the interface positions,
whereas the short-wavelength roughness of an interface
is smeared out and appears on the next interface inde-
pendently. A spatial frequency dependence of the number
of interfaces involved in correlations has been observed
recently [10, 12]. This assumption leads to the accumu-
lation of roughness and brings the following recurrent
formula for the Fourier transforms of displacements of sub-
sequent interfaces [11]: w;(f) = hi(f) + a;(Sujr1(f),
where f is a two-dimensional wave vector in the in-
terface plane, %; are uncorrelated random displace-
ments acquired at jth interface ({h;hc) =0 for j # k).
The function a; governs the roughness transfer; it was
taken in Ref. [11] on the assumption of diffusion-like
roughness  propagation a;(f) = exp[—vi(zj+1 — ) /7],
where v; are relaxation parameters and z;y1 —z; >
0 is the thickness of jth layer (z =0 is the multi-
layer surface and z =zy is the substrate—multilayer
interface).

Here we derive the correlation function of displacements
A (p) for this model on the assumption that the relaxation
parameters are equal to each other, v; = v. Starting from
the substrate roughness uy = Ay and iteratively expressing
u;’s, we arrive at

H(p) = > & f ()

n=max( j, k)

x exp[—v(2zy — z; — z) f*lexp (ifp),  (27)

where (h2(f)) can be expressed in terms of the corre-
lation functions #,(p) describing the acquired interface
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roughness
(ha(f ) =(@m)~? / d®p (hn(0)n(p)) exp (ifp)

= / d’p Au(p) exp (ifp). (28)

As it follows from Eq. (27), the correlation between two
interfaces, jth and kth, is completely determined by rough-
ness acquired on the way from substrate to that interface of
two which is closer to the substrate and does not depend on
the way between these two interfaces.

Denoting p? = 4v(2z, — z; — 2 ) and making the Fourier
transform in Eq. (27) after the substitution of Eq. (28), we
obtain

N 1

H(p)= : / & p' Hr(p')exp[—(p'+pY'/P2).

n=max( j,k) TP

(29)

The limit v — 0, implying complete roughness transfer
at all spatial frequencies and the assumption of similar ac-
quired roughness at all interfaces (An(p) = A (p) at n <
N), gives rise to the correlation function [4] Hu(p) =
An(p) + [N — max(j, k)] (p), where An(p) is the cor-
relation function of the substrate surface.

Let us consider the more general case v # 0. The corre-
lation functions J#,(p) can be assumed in the form (25).
As noted in Ref. [3], the major part of the diffuse scattering
pattern has a weak dependence on the fractal dimensional-
ity 4 in this function. (The exceptions are only the regions
close to the specular reflection strip in the reciprocal space.)
Taking # = 1 (Gaussian distribution) and substituting cor-
relation function (25) into Eq. (29) we obtain

P|— r
)

Hu(p) = (30)

N ) 62
I T ex
2 TR

n=max( j,k)

As clearly seen from Eq. (30), the lateral correlation length

& = /&2 + p? of transferred roughness increases with in-
creasing the separation between interfaces, whereas the ef-
fective rms of transferred roughness o, = a,/+/ 1 + p3/&
decreases. In the limit v — oo one has ;4 (p) = 0,i.e., the
absence of vertical correlations. In the opposite limit v — 0
the roughness is completely transferred and accumulated,
Hu(p) = ZnszaxU’k) o2 exp (—p?/E2). In case where all &,
are equal to each other, &, = £, we can introduce the ver-
tical correlation length &yerr = &€2/v. That is convenient for
comparing this model with the model of non-accumulated
roughness (26).

Now, we turn to the evaluation of the integral in Eq. (24).
In most experiments, the integration over g, (in the direction
normal to the plane of specular reflection) is performed, due

to a wide window of the X-ray detector. Then, Eq. (24)
involves the integration over x only:

28 i .
Ci(Qrzr O, 4:) = ———exp[—(0],%0} + 052 *07)/2]

1222z
o0

></ dx cos (gxx)
0

x{exp [0}, 05 Hu(x)] — 1}.  (31)

In general, the above integral has to be taken numerically.
However, for the correlation function (26) the calculations
can be greatly simplified, as suggested by Sinha [21]: the ex-
ponent in Eq. (31) can be expanded into power series taken
up to ten terms. Then the calculations are reduced to the
evaluation of integrals I'(p) = fooo dx exp (—x*) cos (px),
which can be tabulated in advance. For # = 1 as well as for
h = 0.5 these integrals are taken analytically.

For the correlation function (30) the expansion is basi-
cally not helpful. Direct numerical integration is also diffi-
cult because the integrated function oscillates and generally
contains many exponentials with different decay rates. How-
ever, at large x > Xmax ~ max[&,4/In (100|Q{ZQ’2‘Z* |6,)] the
exponent in Eq. (31) can be expanded to the term linear over
Hr(x) and the corresponding integral can be evaluated an-
alytically. Therefore, the range of numerical integration in
Eq. (31) can be essentially diminished with the help of the
following transformation:

Qi / dr [exp (O Hje(x)) — 1] cos (gex)
Jk Jo

Xmax

dx {05 'Texp (Qu Hjr(x)) — 1]

— (%)} cos (g=x), (32)

= Hj(gx) + 2
0

where we denoted Hj(x) = ZN oh % exp (—x*/EL),

K n=max( j,k)
and Oy = 01,057, and
Hi(gx) = 2/ dx Hj(x) cos (gxx)
0

i o)’ exp(—&2q/4). (33)

n=max( j, k)

— VR

. N
For weak correlations, when |Q| anmax(j 5 ot <1,

the right-hand side of Eq. (33) is reduced to £ (gx) and the
numerical integration is not necessary at all. In particular,
that can often take place for j # k.

5.3. Numerical examples
Let us compare the effect of change in vertical correla-

tions of roughness for two models, non-accumulated and
accumulated interface roughness. We start with the model
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by Ming et al. (26) since it can be directly related to the
analytical estimations of Section 4.

Fig. 2 presents the distributions of diffuse scattering in-
tensity for different values of &.er in Eq. (26). The com-
putations have been performed for GaAs/AlAs superlattice
consisting of 20 periods of 95 A GaAs and 125 A AlAs on
a GaAs substrate, and the X-ray wavelength 2 = 1.5 A. The
parameters of interfacial roughness ¢ = 8.6 A, h=1, and
& = 2000 A have been chosen the same as in Ref. [4]. The
data have been integrated over g,. The left column shows
the iso-intensity maps. The intensity of diffuse scattering is
calculated in the region available in X-ray specular reflec-
tion experiments, the wave vector transfer being restricted
by positive values of the angles of incidence and exit. The
right column shows the sections of diffuse intensity distri-
butions along g, = 0 (along the specular reflection strip).

The most pronounced feature due to the correlations of
roughness of interfaces is the concentration of the intensity
on equidistantly spaced RDS sheets which are perpendicular
to g.-axis at small g and bent with increasing g. [1, 2, 4, 6—
10, 12, 21]. Their formation with increasing &en: is clearly
seen in Fig. 2 and is well understood in the limiting case
of completely correlated roughness, Eqs. (8) and (9). The
RDS maxima are the lines Q. = 2nm/D, the curvature of the
sheets is due to the refraction of X-rays in the slab possess-
ing the mean polarizability yo = (x1d1 + y2d2)/D. In addi-
tion, the diffuse scattering at all &ver possesses the singulari-
ties along the lines where either the incident or the scattered
wave occurs in the Bragg-diffraction condition. These lines
form a regular mesh on the iso-intensity maps in Fig. 2.

The intensity distributions along sections g. = const (cor-
responding to w-scans in experiment) are presented in Fig. 3.
Lines 1 and 3 in Fig. 3 correspond to uncorrelated roughness
and lines 2 and 4 to completely correlated one. All the lines
exhibit the Bragg-diffraction peaks when crossing the mesh
of Fig. 2. For the case of uncorrelated roughness, each peak
is completely characterized by the order m of the diffraction
vector H = 2nm/D and consists of maximum and minimum,
whose sequence is controlled by the factor Sy, Eq. (14). The
peak profile does not depend on ¢. for a given diffraction
order m, as follows from Eq. (13) and can be seen following
the Bragg diffraction lines (regular mesh in Fig. 2), indi-
cated schematically by dotted lines in Fig. 3. The intensity
of the peak smoothly decreases with increasing m due to the
variation of correlation function C. For the value d,/D =

Fig. 2. Formation of resonant sheets in X-ray diffuse scattering
from periodic multilayers with an increase in the vertical correlation
length of interface roughness. The left column presents iso-intensity
maps and the right one shows the sections of diffuse intensity at
g = 0. The thomb-like mesh in the maps is due to the Bragg
conditions for either incident or scattered X-ray waves. For the
parameters of computations, see text.
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Fig. 3. Sections of diffuse intensity along g, at constant g, for
interface roughness possessing no correlations at different interfaces
(lines 1 and 3) and complete vertical correlation through multilayer
stack (lines 2 and 4). Lines 1 and 2 correspond to the section along
the 5th resonance sheet (g = 0.1487 A~!) and lines 3 and 4 to
that along the 4th sheet (¢ = 0.1212 A= 1).

0.43 used in the calculations and for m = 2,3, and 4, Eq.
(14) gives S, = —0.77, 0.97, and —0.98, respectively. Thus,
S, changes its sign for m = 2, 3, 4 in the order (—,+, —)
and in the same order changes the sense of the features of
the Bragg peaks: the 3rd order peak on curves 1 and 3 of
Fig. 3 has the opposite sense with respect to the 2nd and 4th
peaks.

For the case of correlated roughness, the sense of the peaks
is controlled by another factor, S, Eq. (19), and depends
on the order n of RDS sheet (@, = 2rn/D). For n = 5 and
m = 2,3, and 4, one has S; = —0.34, —0.15, and —0.15, i.e.
(=, —,—). Accordingly, the three peaks on the curve 2 of
Fig. 3 have the same sense and, in particular, the 3rd order
peak possesses opposite contrasts in cases of correlated and
uncorrelated roughness. For n = 4 (curve 4 of Fig. 3) one
has S; = —0.14 and 0.59 for m = 2 and 3, respectively, and
the sense of the 3rd peak is preserved (cf. curves 2 and 4
in Fig. 3). Thus, the effect of the two limits of completely
correlated and uncorrelated roughness on qualitative features
of the Bragg peaks becomes obvious in Fig. 3 particularly
for the 3rd order peak, which possesses opposite contrasts
for the two cases at n = 5 and equal contrasts at n = 4.

Fig. 4 illustrates the process of transforming the 3rd peak
at n = 5 with increasing vertical correlation. One can see
that the peak contrast becomes already inverted at minor
vertical correlations, the parameter &yerr = 200 A being less
than one multilayer period, thus confirming predictions of
Section 4.4.

-3
10

-4
10 1

Intensity (a.u.)

0.001
q, (A%

Fig. 4. Transformation of Bragg peaks in the section along the
5th resonance sheet with an increase in the vertical correlation
length of interface roughness. Lines 1 to 6 correspond to Eyert =
0, 200, 500, 1000, 10000, co A, respectively. The vertical dotted
line marks transformation of the 3rd Bragg peak.

0
0.000

The Bragg singularity at m = 1 in Fig. 3 must be discussed
separately because it is formed by the dynamical diffraction
of the incident wave. The width of the peak is A; ', the in-
verse value of the extinction length for this reflection. Since
the extinction length is smaller than the multilayer thick-
ness L, the peak width exceeds that of the kinematical peaks
(m = 2, 3, 4), which are proportional to L™". The decrease
in penetration depth in the total reflection region gives rise
to a broad minimum with the peaks at the edges of that re-
gion where the penetration depth essentially increases. This
behavior is similar to that in the standing wave problem if
the depth of secondary radiation yield exceeds the extinction
length [35].

Fig. 5 illustrates the same process as in Fig. 4 for the ac-
cumulated roughness model, i.e. for the correlation function
(30). The parameters of calculations are the same as in pre-
vious figures with the exception of rms roughness: o, <y =
1.6 A and oy = 8.6 A. The rms roughness heights at inter-
faces depend on the vertical correlation length: for example,
the value of g, at the top interface (the surface) varies from
1.6 A at Even = 0 t0 13.3 A at &yen = 0.

By comparing Figs. 4 and 5, one can see that, with in-
creasing the vertical correlation length, the diffuse intensity
in Spiller’s model increases first for small g,, due to prior
transferring of the long-wavelength interface roughness. It
can also be noted that the contrast of the 3rd Bragg peak
inverts later than in the non-accumulated roughness model,
though this peak changes its sense at a rather small vertical
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Fig. 5. The same as in Fig. 4 for the accumulated surface roughness
model.

correlation length as well (&ver s less than 5 periods). In this
model the inversion of the contrast occurs at smaller yer
for peaks located closer to g, = 0 and in the case of small
lateral correlation length ¢ of roughness (the sensitivity of
peak contrast to vertical correlations is increased at g |peak <

1/0).

6. Conclusions

We have analyzed the Bragg-diffraction peaks in X-ray
diffuse scattering due to interface roughness from periodic
multilayers. The factors controlling the contrast of these
singularities have been found analytically and confirmed
by numerical calculations. For completely uncorrelated
roughness of interfaces, Bragg singularities follow the in-
tensity of the X-ray standing wave at the interfaces. It has
been proven that the contrast of these peaks can invert
due to minor correlations between roughness which are
insufficient for formation of the resonance diffuse scattering
sheets. This sensitivity is especially pronounced in the case
of non-accumulated interface roughness. The inversion of
the Bragg peak sense might be helpful in studies of minor
correlations between rough interfaces.
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