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X-ray Server (https://x-server.gmca.aps.anl.gov) is a collection of programs for

online modelling of X-ray diffraction and scattering. The dynamical diffraction

program is the second most popular Server program, contributing 34% of total

Server usage. It models dynamical X-ray diffraction from strained crystals and

multilayers for any Bragg-case geometry including grazing incidence and exit.

This paper reports on a revision of equations used by the program, which yields

ten times faster calculations in most use cases, on implementing calculations of

X-ray standing waves and on adding new options for modelling diffraction from

monolayers.

1. Introduction

X-ray Server (https://x-server.gmca.aps.anl.gov] is a web

service providing free unrestricted access to a collection of

programs implementing the author’s models in the fields of

dynamical X-ray diffraction from strained crystals, multiple

Bragg diffraction, X-ray specular reflection and diffuse scat-

tering from multilayers with rough interfaces, resonant X-ray

reflection from magnetic multilayers, calculation of scattering

factors, and searches for Bragg reflections meeting specified

conditions. All software operates directly on the Server and is

available for use without need for local installations. The

project has been online since 1997, being one of the first in the

X-ray field, and its recognition has been growing exponen-

tially: the usage of the software has doubled approximately

each two years as shown in Fig. 1. Since 1997 the Server has

processed more than 5 400 000 X-ray requests; about 1200

users (unique IP addresses) deployed it at least 100 times; and

about 6400 users ran the programs ten or more times. The fast

usage growth was facilitated by several developments. Initially

the Server programs were accessible via web browsers only

(Stepanov, 2004). Then, around 2006, we added some example

scripts illustrating how to call the Server programs from user

software (Stepanov, 2007). This helped users to arrange

remote data fitting where the X-ray Server programs are called

at each iteration and then the calculations are compared with

experimental data. In 2008 the first successful remote data

fitting of Bragg diffraction from an AlSb/AlAs superlattice

using the Server program was reported (Stepanov & Forrest,

2008). In 2016 the graphical interface to the X-ray Server

program was developed within the OASYS package by the

ESRF and the APS (Rebuffi & Sanchez del Rio, 2017; Sanchez

del Rio et al., 2014). It provided a tool for looped calling of the

Server programs without any programming on the user side.

Finally, in 2017 an online interface for adding crystal structures

to the Server materials database and their verification against
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expected space groups was developed. Once added, the

structures can be used with any Server programs.

The dynamical diffraction program presented in the X-ray

Server is named GID_sl [grazing incidence diffraction (GID)

from superlattices]. It is based on the paper by Stepanov et al.

(1998), which suggested a recursive matrix method for calcu-

lating GID from crystals with strained multilayers at their

surfaces. In this method, each layer is treated as a perfect

crystal where the fourth-order dispersion equation of the

extended dynamical diffraction theory accounting for X-ray

specular reflection and refraction is solved. The four solutions

of this equation in each layer correspond to four pairs of

transmitted and diffracted X-ray waves with the amplitudes

given by the boundary conditions for electric fields and their

derivatives. The overall problem is reduced to 4 � 4 matrix

equations. Following the method suggested by Kohn (1991) for

multiple Bragg diffraction, Stepanov et al. (1998) split the 4 �

4 matrices into 2 � 2 blocks and thus further reduced the

problem to recursive equations for these 2 � 2 blocks. The

splitting provides a better numerical stability of calculations

for crystals with a large number of layers compared with using

4 � 4 matrices because it helps to separate exponents growing

with the crystal depth coordinate from those decreasing with

the depth: the former and the later end up in different matrix

blocks.

The GID_sl program fully accounts for potential specular

reflection effects of X-rays at grazing incidence and/or exit,

which allows its application to a wide range of X-ray diffrac-

tion cases from grazing-incidence X-ray diffraction to regular

diffraction at normal incidence angles, i.e. far beyond the GID

cases. Furthermore, the analysis of the GID_sl usage at X-ray

Server shows that about 95% of jobs use it for regular X-ray

diffraction without any grazing incidence or exit. Under these

conditions all specular reflection effects can be neglected and

the 4 � 4 matrices can be reduced to 2 � 2 while their

subblocks can be reduced to scalars. In the cases where only

one X-ray wave is grazing, whether the incident or the exit, the

matrices can be reduced to 3 � 3 and their subblocks become

2 � 2, 2 � 1, 1 � 2 and 1 � 1 in size. Implementation of these

changes dynamically, depending on the incidence and exit

angles, is the subject of this report. We show that it can speed

up calculations by up to ten times and also improve their

numerical stability because it avoids accounting for negligibly

small effects that are a potential source of precision loss errors.

We also report on adding calculations of X-ray standing waves

and implementing additional data input for modelling

diffraction from very thin layers.

2. Dynamical reduction of dispersion equation

According to Stepanov et al. (1998), in the case of Bragg

diffraction from multilayers, the X-ray electric field in each

layer can be represented as

DðrÞ ¼
P4

j¼1

expðik0j � rÞ D0j þDhj expðih � rÞ
� �

; ð1Þ

where the sum is over the pairs (branches) of transmitted

waves and diffracted waves with the amplitudes D0j and Dhj,

respectively. For each branch the amplitudes D0j and Dhj are

linearly related by the dynamical diffraction equations. The

vectors k0j are the wavevectors of the transmitted waves in the

layer. They can be split into the lateral component along the

crystal surface, which is the same in vacuum and all layers

because of the boundary conditions, and the normal compo-

nents represented as kzj = kuj, where k is the modulus of the

X-ray wavevector in vacuum and the scalars uj are the roots of

the following dispersion equation:

u� u0ð Þ uþ u0ð Þ uþ  þ uhð Þ uþ  � uhð Þ ¼ �h� �hh: ð2Þ

Here u0 ¼ ð�
2
0 þ �0Þ

1=2 and uh ¼ ð�
2
h þ �0Þ

1=2 are the k-

normalized z components of the wavevectors of the refracted

waves along the incident and diffracted waves in the layer

corresponding to the amorphous state, �0, �h and � �hh are the

crystal susceptibilities, and �0 = k0z/k and �h = khz/k are the

sines of the angles made by the incident and diffracted waves

to the surface in vacuum; they can also be treated as z

components of the in-vacuum incident and diffracted waves

normalized by k. Parameter  is the normal component of the

Bragg vector normalized by k: = hz/k. Since the refraction of

X-rays is very small, the dispersion equation solutions uj can

only provide strong X-ray amplitudes when either uj ’ �u0 or

(uj +  )’�uh. Also note that |�0|1/2 is the critical angle �c for

total external reflection of X-rays from a layer. Then, the

dispersion equation can be expressed as a product of four

terms (branches) corresponding to the transmitted, specularly

reflected, diffracted and diffracted–reflected waves:

S0S0sShShs ¼ �h� �hh: ð3Þ

The product on the right side of equations (2) and (3) is very

small, j�h� �hhj ’ 10�12. Therefore, the four roots uj of the

dispersion equation (2) correspond to approximate zeroing of
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Figure 1
X-ray Server usage statistics. Black: total usage; blue: the dynamical
diffraction program usage.



each of the four multipliers on the left side of equation (3).

When both the incidence angle and the exit angle of the

diffracted wave are of the order of �c, i.e. �0ffi |�0|1/2 and �hffi

|�0|1/2, then all four solutions uj are also of the same order

ffi |�0|1/2. In this case we have to take into consideration all

four solutions uj because they provide strong amplitudes.

However, when either �0 or �h is large, the situation changes.

2.1. X-ray diffraction without grazing angles

Let us consider the case of normal X-ray diffraction where

�0��c and |�h|��c. Two roots of equation (2) are going to

be of the order u1 ’ u0 and (u2 +  ) ’ �uh. They come from

the conditions S0 ’ 0 and Sh ’ 0, respectively. Since from the

Bragg law (�0 +  ) ’ �h and at large incidence and exit angles

�0 ’ u0 and �h ’ �uh (�h is negative), both of these roots are

close to u0. Then for u1 and u2, the other two multipliers in

equation (2) are large and equation (2) can be simplified as

u� u0ð Þ uþ  þ uhð Þ ¼ �
�h� �hh

4u0uh

: ð4Þ

The other two roots of equation (2), u3’�u0 and u4’ uh�

 , correspond to specularly reflected and diffracted–reflected

waves and can be discarded because the amplitudes of these

two waves are small. Thus, we have arrived at a quadratic

dispersion equation which can be easily transformed into a

classical form of the dynamical diffraction theory [see

Stepanov et al. (1998)]. With this equation, the roots can be

found analytically and the 2 � 2 matrices of Stepanov et al.

(1998) are reduced to scalars. Correspondingly, the calcula-

tions for multilayers are greatly simplified. As we found in our

benchmarking tests, these calculations take about 10� less

time compared with using the full fourth-order dispersion

equation.

2.2. Asymmetric X-ray diffraction with grazing incidence and
normal exit angles

Applying the same approach as for normal diffraction, it is

easy to find that in the case of asymmetric diffraction with

grazing incidence the root corresponding to Shs ’ 0 is sepa-

rated from the other three and this branch can be neglected.

Then equation (2) reduces to the cubic polynomial form

u2
� u2

0

� �
uþ  þ uhð Þ ¼ �

�h� �hh

2uh

: ð5Þ

Among the three roots uj of equation (5), one has Im(u1) >

0, corresponding to the transmitted wave propagating inside

the layer, and the other two have Im(u2,3) < 0, corresponding

to the diffracted and specularly reflected waves propagating

back to the entrance surface.

2.3. Asymmetric X-ray diffraction with normal incidence and
grazing exit

Finally in the case of asymmetric diffraction with grazing

exit one can neglect the branch corresponding to S0s ’ 0 and

reduce equation (2) to another cubic polynomial form:

u� u0ð Þ uþ  ð Þ
2
� u2

h

� �
¼
�h� �hh

2u0

: ð6Þ

Among the three roots uj of equation (6), two have

Im(u1,2) > 0, corresponding to the transmitted and diffracted

waves propagating inside the layer, and the remaining one has

Im(u3) < 0, corresponding to the specularly reflected

diffracted wave propagating back to the entrance surface.

2.4. Wave amplitudes and recursive matrix equations for
multilayers

As per Stepanov et al. (1998), for each root uj of equations

(2), (4), (5) or (6) the amplitudes D0j and Dhj are related by the

dynamical diffraction equation:

Dhj ¼
u2

j � s2
0

� �hh

D0j: ð7Þ

The amplitudes and the reflection coefficients are deter-

mined with the help of boundary conditions at each interface

of one or more layers in the crystal. For grazing waves the

boundary conditions need to be applied not only for X-ray

amplitudes but also for their derivatives, which corresponds to

accounting for X-ray refraction and specular reflection effects.

For non-grazing waves these effects can be neglected and the

conditions for the derivatives can be dropped. The boundary

conditions can be represented in the 4 � 4 matrix form for

X-ray diffraction with both grazing incidence and exit, in the

3 � 3 matrix form for X-ray diffraction with only one grazing

wave, and in the 2 � 2 matrix form for normal X-ray diffrac-

tion. The rest of the solution can follow Section IV of

Stepanov et al. (1998), but with reduced size of matrix blocks.

For example, for asymmetric diffraction with only one grazing

wave the non-diagonal matrices Mtr and Mrt of equation (17)

of Stepanov et al. (1998) become 2 � 1 or 1 � 2 non-square

instead of 2 � 2 square; for normal diffraction all matrices Mij

become scalars.

2.5. Implementation in the GID_sl program

With the above considerations, the X-ray Server program

GID_sl has been supplied with the new parameter ‘Matrix

reduction’ which can have three values: ‘No’, ‘Prescan’ and

‘Fly’. When the default ‘Fly’ option is selected, the program

automatically selects equation (2), (4), (5) or (6) and the

respective size of the scattering matrix according to the ratio

of �0 and �h to the maximum critical angle �c for total

external reflection among all layers in the multilayer crystal

stack. For example, if both �0 > 5�c and |�h| > 5�c then the

case is considered as normal diffraction, etc. If the ‘Prescan’

option is selected, the curve is pre-scanned for the condition of

the ratio of �0 and �h to �c and then the maximum dispersion

equation order and the matrix size are applied to all curve

points to avoid potential discontinuities. With the ‘No’ option

equation (2) and 4 � 4 scattering matrices are used as in the

previous version of GID_sl. Fig. 2 shows a comparison of the

‘Fly’ option with the full 4 � 4 calculations in the grazing

incidence case (germanium 100 crystal, 311 Bragg reflection,

X-ray energy 8.3 keV). Below the incidence angle of 1.5	 the
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Fly method uses equation (5) and above it it applies equation

(4), while the no-reduction method uses equation (2) for the

whole curve. Obviously the difference in the results is negli-

gible while the Fly calculations are up to 10� faster and more

stable numerically, especially in the cases of weak Bragg

reflections and large-number multilayers.

3. Calculations of X-ray standing waves

As first shown by Batterman (1964), when dynamical X-ray

diffraction occurs in a crystal, interference of transmitted and

diffracted waves forms an X-ray standing wave (XSW) with

the nodes shifting with respect to the crystal matrix when the

crystal is rocked around the Bragg angle. This effect allows the

foreign atoms in the crystal structure to be located as their

fluorescence is proportional to the intensity of the XSW at

their location (Batterman, 1964; Afanas’ev & Kohn, 1978;

Zegenhagen, 1993). Jach & Bedzyk (1993) extended studies of

the XSW effect to grazing-incidence diffraction. Many

researchers have contributed to the XSW field; see the

comprehensive review by Zegenhagen (2020) for details and

references.

Given the popularity of the XSW method, we expect that

providing online XSW calculations may be helpful to the

community. Since the GID_sl program calculates amplitudes

for all X-ray waves in a crystal consisting of one or more

layers, the XSW in each layer can be calculated as

IXSWðz; ’Þ ¼
Pn

j¼1

exp ik z� zmð Þum
j

� �
Dm

0j þDm
hj expði�’Þ

� �
�����

�����

2

:

ð8Þ

Here ’ is the phase parameter corresponding to the position

of the probe with respect to the Bragg planes; ’ = 0 and ’ = 1

correspond to the positions at the Bragg planes and halfway

between the Bragg planes, respectively; z is the depth at which

the XSW is calculated, m is the index of the layer in the

multilayer stack which corresponds to z, and zm is the coor-

dinate of the upper interface of that layer. The parameters Dm
0j,

Dm
hj and um

j are the solutions to the dynamical diffraction

equations discussed in Section 2. The user enters two para-

meters, z and ’. Then the GID_sl program finds the layer m in

the stack and calculates the XSW using equation (8) for each

given deviation from the Bragg condition. The example

calculation presented in Fig. 3 demonstrates the well known

XSW effect for symmetric Bragg diffraction. Since GID_sl is

designed for any Bragg-case geometry, it provides a tool to

model XSWs in a wide variety of cases including for strained

crystals and multilayers. If the pattern needs to be integrated

over the fluorescence yield depth, GID_sl has an option to

calculate the XSW for multiple depth positions in one run or it

can be called in a loop from user software as discussed in the

Introduction.

4. New provisions for calculating reflections from
monolayers

As noted by Jenichen et al. (2005), when calculating the

Fourier components �h of crystal polarizability in each layer,

the origin of the unit cell is chosen independently for each

layer, usually according to the symmetry of the respective

layer. The phase factor exp(ih � R) that arises if the origin is

shifted by a real-space distance R is not taken into consid-

eration. Such a phase factor does not appear if all epitaxial

layers have a similar structure. However, if the structures are

different, the relative positions of the unit cells in different

layers are not known in advance and an additional phase

factor in the polarizability of one layer with respect to another

may appear. One example is binary alloy structures, which can

grow either as ABAB . . . or as BABA . . . . The new version of

the GID_sl program introduces an option to specify the shift

computer programs
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Figure 2
Comparison of simplified calculations automatically switching between
3 � 3 and 2 � 2 matrix sizes against full 4 � 4 calculations in the grazing-
incidence case (germanium 100 crystal, 311 Bragg reflection, X-ray
energy 8.3 keV).

Figure 3
X-ray standing wave calculations for a probe located in the Bragg planes
(’ = 0) and halfway between the Bragg planes (’ = 1) superimposed with
the Bragg curve. Calculations are for a germanium crystal, 111 symmetric
Bragg reflection and X-ray energy 8.0 keV.



for each layer. The shift is expressed in multiples of � and can

be specified in the range [�2, 2].

5. Conclusions

We have described three important updates to the popular

web-based GID_sl program for simulation of dynamical X-ray

diffraction. The first (matrix size reduction) is aimed at

improving the program speed and numerical stability, and the

other two (output of X-ray standing waves and option to

specify relative phases of X-ray polarizability �h for each

crystal layer) extend the program capabilities. The GID_sl

program is freely accessible to the community through the

X-ray Server project (https://x-server.gmca.aps.anl.gov) with-

out the need for compiling and local installation. An addi-

tional benefit of such an approach is that all bug fixes are done

in a single place and everyone uses the latest and the most

debugged software version.
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