

X-RAY SERVER: 28 YEARS ONLINE. LATEST AI-ASSISTED DEVELOPMENTS

SERGEY STEPANOV

Argonne National Laboratory,
Advanced Photon Source,
Lemont, IL, USA

DESY Photon Science Users' Meeting "Research with Synchrotron Radiation and FELs"
January 29, 2026: "Enhancing UX in X-ray Optics: Simulations including AI-driven Applications"

What is X-ray Server?

Let us ask Google Gemini AI: “what is Stepanov X-ray server?”

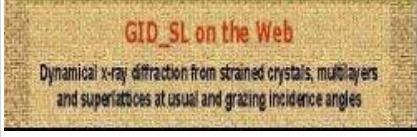
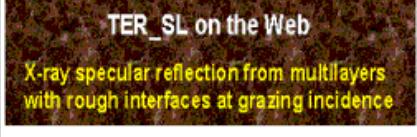
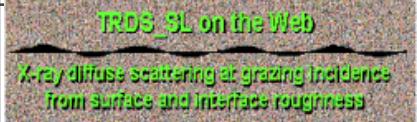
AI Overview

The Stepanov X-ray Server (x-server.gmca.aps.anl.gov) is a widely used web-based platform for X-ray diffraction and scattering simulations, providing researchers with free access to advanced computational tools developed by X-ray physicist Sergey Stepanov, allowing them to model complex phenomena like dynamical diffraction from crystals and multilayers directly online without software installation. It serves as a vital resource for planning experiments, analyzing data, and fostering scientific collaboration by offering immediate access to sophisticated X-ray modeling software.

Advanced Models: Implements complex physical models for interface roughness, X-ray standing waves, and more.

Established Resource: Online since 1997, it has processed millions of requests, making it a reputable tool in the X-ray community.

Why It's Important




Ease of Use: Provides immediate access to powerful tools, accelerating research.

Collaboration: Facilitates remote collaboration and feedback, helping refine models and software.

Accessibility: Makes advanced X-ray modeling accessible to a broad scientific audience

Software available through X-ray Server

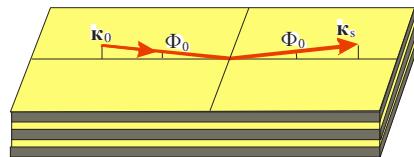
<https://x-server.gmca.aps.anl.gov> (online since 1997; performed **5,694,899** calculations)

	<p>Xoh interpolates dielectric susceptibilities for crystals and other materials in wide range of X-ray energies with the option to compare data from different DBs.</p> <p>Xoh+ provides search for Bragg planes in crystals under various conditions (Bragg angle, strong reflections...).</p>	3,220,539 56.6%
	<p>GID_sl models X-ray diffraction from strained crystals and multilayers for any Bragg-case geometry including grazing incidence/exit and scans around arbitrary axes</p>	1,947,002 34.2%
	<p>TER_sl calculates X-ray specular reflection and respective X-ray standing waves from multilayers with interface roughness and transition layers .</p>	426,118 7.5%
	<p>BRL models multiple Bragg diffraction of X-rays from perfect crystals including the cases of X-rays grazing along the surface and Bragg angles close to 90°.</p>	56,301 1.0%
	<p>TRDS_sl calculates X-ray diffuse scattering for several models of interface roughness in multilayers.</p>	25,297 0.4%
	<p>MAG_sl calculates X-ray resonant specular reflection from magnetic multilayers with interface roughness and transition layers.</p>	19,642 0.3%

Based on 19 x-ray research papers. Statistics as of January 19, 2026.

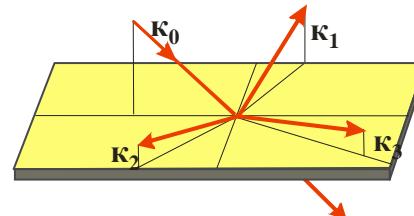
X-ray Server programs

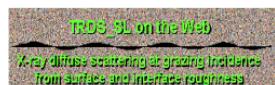
34.2%

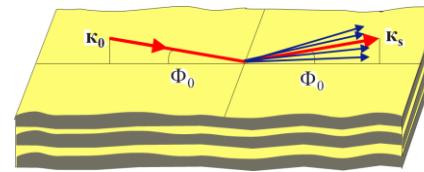


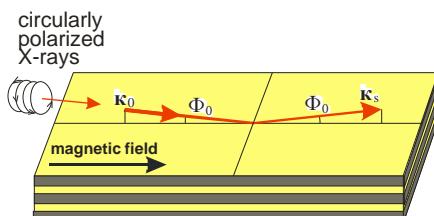
Any Bragg-case diffraction incl. grazing incidence and/or exit

- Calculates Bragg diffraction from crystals with given profiles of normal lattice strains $da(z)/a$, dielectric susceptibilities $\chi_0(z)$, $\chi_h(z)$, and interface roughness height $\sigma(z)$. The profiles are specified layer-by-layer, which allows for flexibility.
- Can calculate X-ray standing waves


7.5%

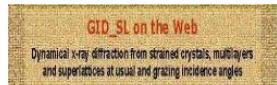

- Calculates X-ray specular reflection from plain mirrors and multilayers with given profiles of $\chi_0(z)$ and interface roughness height $\sigma(z)$ or transition layers.
- Converges faster than the Parratt recursive technique
- Can calculate X-ray standing waves in multilayers


1.0%

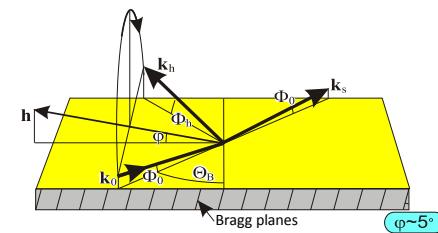

- Calculates multiple Bragg diffraction from perfect crystals including X-rays grazing along the surface and Bragg angles close to 90°
- Takes into account specular reflection and refraction of X-rays at crystal surface for grazing X-rays, but neglects for non-grazing.

0.4%

- Calculates X-ray diffuse scattering from interface roughness in multilayers
- Implements modeling for 10 different types of roughness correlations between the layers.

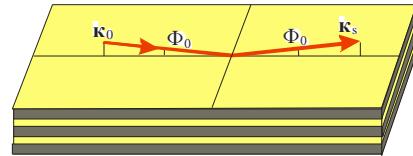


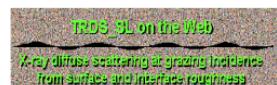
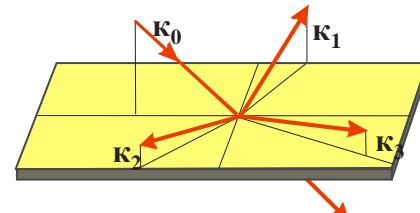
Calculates resonant X-ray reflectivity from magnetic multilayers

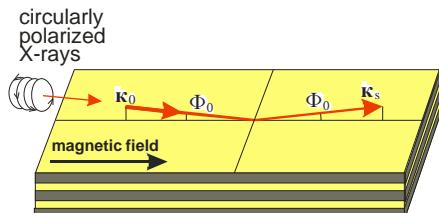


0.3%

X-ray Server structure factors (X0h)


34.2%



Any Bragg-case diffraction incl.
grazing incidence and/or exit


7.5%

1.0%

0.4%

0.3%

56.6%

- Besides the web interface, also provides X-ray scattering factors for **all** X-ray Server programs.
- Interpolates data from five different tables with option to compare.
- Provides search for Bragg planes under various conditions

Structure factors: web interfaces

X-rays:

Wavelength (Å): 12
 Energy (keV):
 Characteristic line: Cu-Kα1 ?

Target:

Crystal: Silicon ?
 Other material:
 Chemical formula: and density (g/cm³):

Reflection:

Miller indices: 1 1 1

Database Options for dispersion corrections df1, df2:

Auto (Henke at low energy, X0h at mid, Brennan-Cowan at high).
 Use X0h data (5-25 keV or 0.5-2.5 Å) -- recommended for Bragg diffraction
 Use Henke data (0.01-30 KeV or 0.41-1240 Å) -- recommended for soft X-rays
 Use Brennan-Cowan data (0.03-700 keV or 0.02-413 Å)
 Use Windt data (0.01-100 KeV or 0.12-1240 Å)
 Use Chantler data (0.01-450 KeV or 0.28-1240 Å)
 Compare results for all of the above sources.

Output Options:

Print atomic coordinates
 Text-form output

Get X0h! Reset

These are not quantum calculations of structure factors, but interpolation of data from publicly available tables of atom properties combined with integration over crystal unit cell

X-rays:

Wavelength (Å):
 Energy (keV):
 Characteristic line: Cu-Kα1 ?

Crystal:

Select code Silicon ?

Bragg planes range:

From: -5 -5 -5 To: 5 5 5

Bragg angle range:

From: 0. To: 90.

Intensity control:

Minimum |xh/x0| (%): 0.

Database option for dispersion corrections df1, df2:

Auto (Henke at low energy, X0h at mid, Brennan-Cowan at high).
 Use X0h data (5-25 keV or 0.5-2.5 Å) -- recommended for Bragg diffraction
 Use Henke data (0.01-30 KeV or 0.41-1240 Å) -- recommended for soft X-rays
 Use Brennan-Cowan data (0.03-700 keV or 0.02-413 Å)
 Use Windt data (0.01-100 KeV or 0.12-1240 Å)
 Use Chantler data (0.01-450 KeV or 0.28-1240 Å)

Find only those Bragg planes which make certain angles to the surface:

Surface plane indices: 1 0 0

Planes make angles from Theta1 to Theta2
 Planes make angles from Theta1 to (Bragg_Angle - Theta2)
 Planes make angles from (Bragg_Angle - Theta1) to (Bragg_Angle - Theta2)

Theta1: 0. Theta2: 180.

Find Planes! Reset

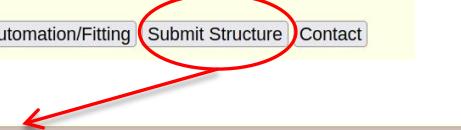
The X0h structures DB currently contains 184 crystals. Most are submitted by users.

X0h structure submission interface

Submission is currently semi-automated: user fills web form which applies space group transformations and makes several checks for consistency. Then, it is sent for further manual inspection and approval.

The reasons for manual checks:

- Users are not crystallographers and mistakes are frequent.
- Once the submitted structure become public, errors put the server, not the submitter reputation at stake.


Further automation plans:

- Assign temp access code or use submitter's IP address to make the submitted structure available to the submitter only until manual inspection is completed and the structure is made public.

X-RAY SERVER

This site has been online since 1997 and has served 5,694,999 X-ray jobs

[About](#) [Conditions of Use](#) [Changes Log](#) [Automation/Fitting](#) [Submit Structure](#) [Contact](#)

Space group= 216 F-43m Density= 5.3 g/cm3 Z: 4 ?

Crystal name= GAAS

A= 5.65 B= 5.65 C= 5.65

Alpha= 90 Beta= 90 Gamma= 90

Atom1= Ga Occupation= 1

Coordinates (x,y,z): 0.00, 0.00, 0.00

Atom2= As Occupation= 1

Coordinates (x,y,z): 0.25, 0.25, 0.25

Add atom

Submit structure for verification

Diffraction program GID_sl web interface

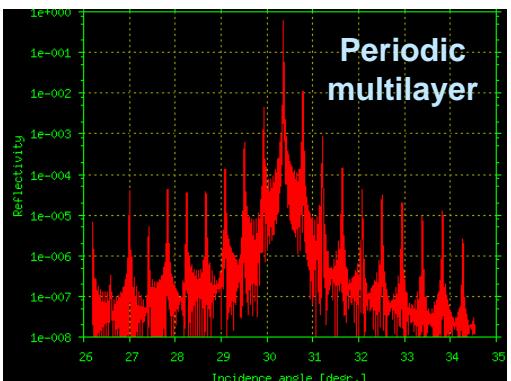
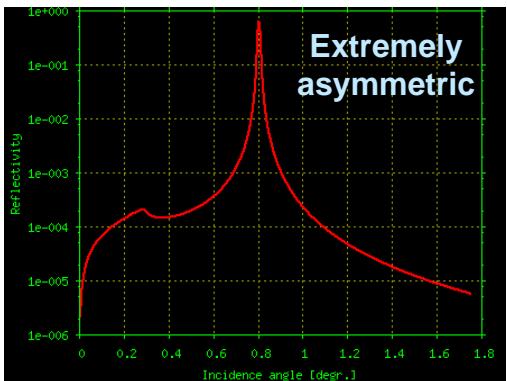
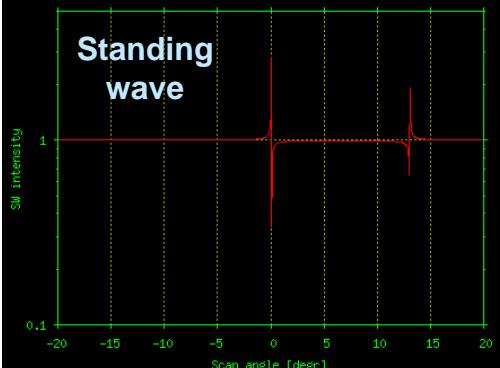
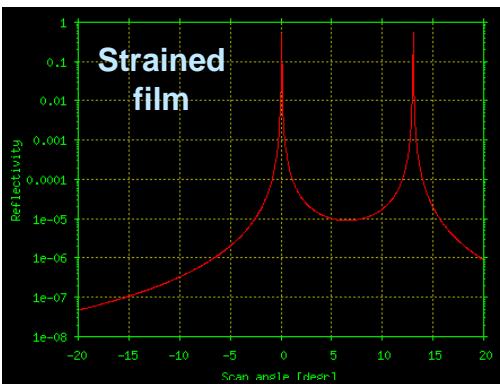
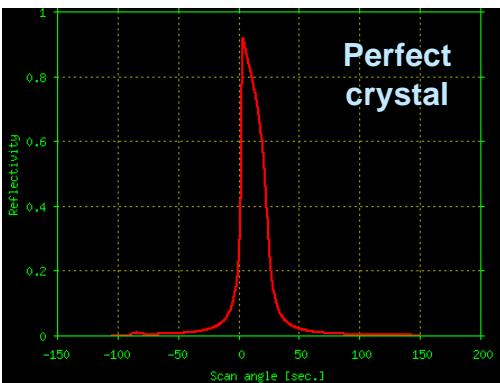
X-rays specified by: Wavelength (Å) Value= 1.540562 Line= Cu-Kα1 Polarization= Sigma

Crystal: Germanium Auto DB for f', f'' Sigma= 0. A W0= 1. Wh= 1.

Bragg Reflection: 1 1 1 Substrate da/a= 0.

Geometry specified by: angle of Bragg planes to surface ('+' for $g\bar{g} > g\bar{h}$) Value: 0. deg.

Scan: from -60. to +60. sec. Scan points: 401 Invert axis: Plot argument: scan angle






Standing waves: Reference interface = 0 (0=surface)
Start offset = 0. Angstrom (down from reference)
End offset = 0. Angstrom (down from reference)
Number of offsets = 1 (max = 401)
Location phase/pi = 0 (0-2, empty for no phase)

Approximations: alpha_max= 1.E+8 *|xh| Matrix reduction: Fly

watch progress (single click, please!)

Top layer profile (optional):
period=
t= sigma= da/a= code= x= code2= x2= code3= x3= code4= x0= xh= xhdf= w0= wh= xhphase=
end period
period=20
t=100 code=GaAs sigma=2
t=70 code=AlAs sigma=2 da/a=a
end period

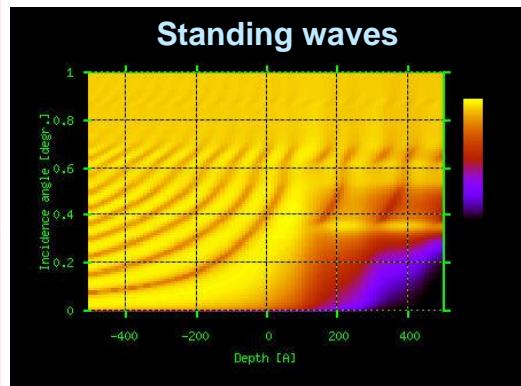
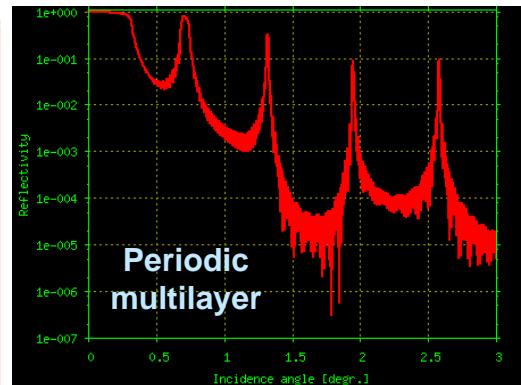
Available codes:
[?] Crystals:
ADP
AlAs
AlFe3
AlN
AlP
AlSb

Reflectivity program TER_sl web interface

X-rays: Wavelength(A) / Energy(keV) = 1.540562 Line=Cu-Ka1 Polarization=Sigma

Substrate: Database code: GaAs Chemical formula: Susceptibility $x_0 = ($ $)$ / format: $x_0 = (Re(x_0), Im(x_0))$; note: $x_0 = 2 * \delta$ / x_0 correction: $w_0 =$ / this is used as: $x_0 = w_0 * x_0$ /
Roughness: sigma = Angstrom OR Transition layer tr = Angstrom

Incidence angle limits: from to deg. Scan points=601



Standing waves: Reference interface = (0=surface)
Start offset = Angstrom
End offset = Angstrom
Number of offsets = (max = 401)

watch progress (single click, please!)

Top layer profile (optional):
t=20 w=0.5 sigma=5 lsurface oxide, organic contamination or dust
period=20
t=100 code=GaAs sigma=4
t=70 code=AlAs sigma=4
end period

(same "Submit" action as above; single click, please!)

Available codes:
(use Copy/Paste)
Ac
Ag
Al
Al2O3
AlAs
AlFe3
AlN
AlP

- **Applications:** X-ray optics (mirrors and multilayer mirrors and monochromators) and semiconductor material science
- **Limitations:** no curved mirrors

Plans:

- Add energy scans.

Multiple diffraction program BRL web interface

Target:

Crystal: Silicon

Surface: Base plane:

Miscut direction:

Miscut angle: 0.

Reflections:

Reflex-1:

Reflex-2:

Index search range: 5

Min. Intensity filter: 0.1
($|xh/x0| * 100\% > \dots$)

X-rays:

Wavelength (A):

Energy (KeV):

Characteristic line: Cu-K α

Fixed by coplanar case

Fixed by Reflex-3:

Database Options for dispersion corrections df1, df2:

Auto (Henke at low energy, X0h at mid, Brennan-Cowan at high).

Use X0h data (5-25 KeV or 0.5-2.5 A) -- recommended

Use Henke data (0.01-30 KeV or 0.41-1240 A)

Use Brennan-Cowan data (0.03-700 KeV or 0.02-413 A)

Use Windt data (0.01-100 KeV or 0.12-1240 A)

Use Chantler data (0.01-450 KeV or 0.28-1240 A)

Crystal: Silicon Symmetry: Cubic X0h data: Automatic DB choice
Surface: base plane=(1 1 1) miscut direction=(1 -1 0) miscut angle=0. deg.
Thickness (microns): 100.

X-rays: wavelength= 2.6344 Å energy= 4.7063 keV line="none"
X-ray polarization: [1] Mixed (unpolarized) Angle to pi0 for mode [2]: 0.

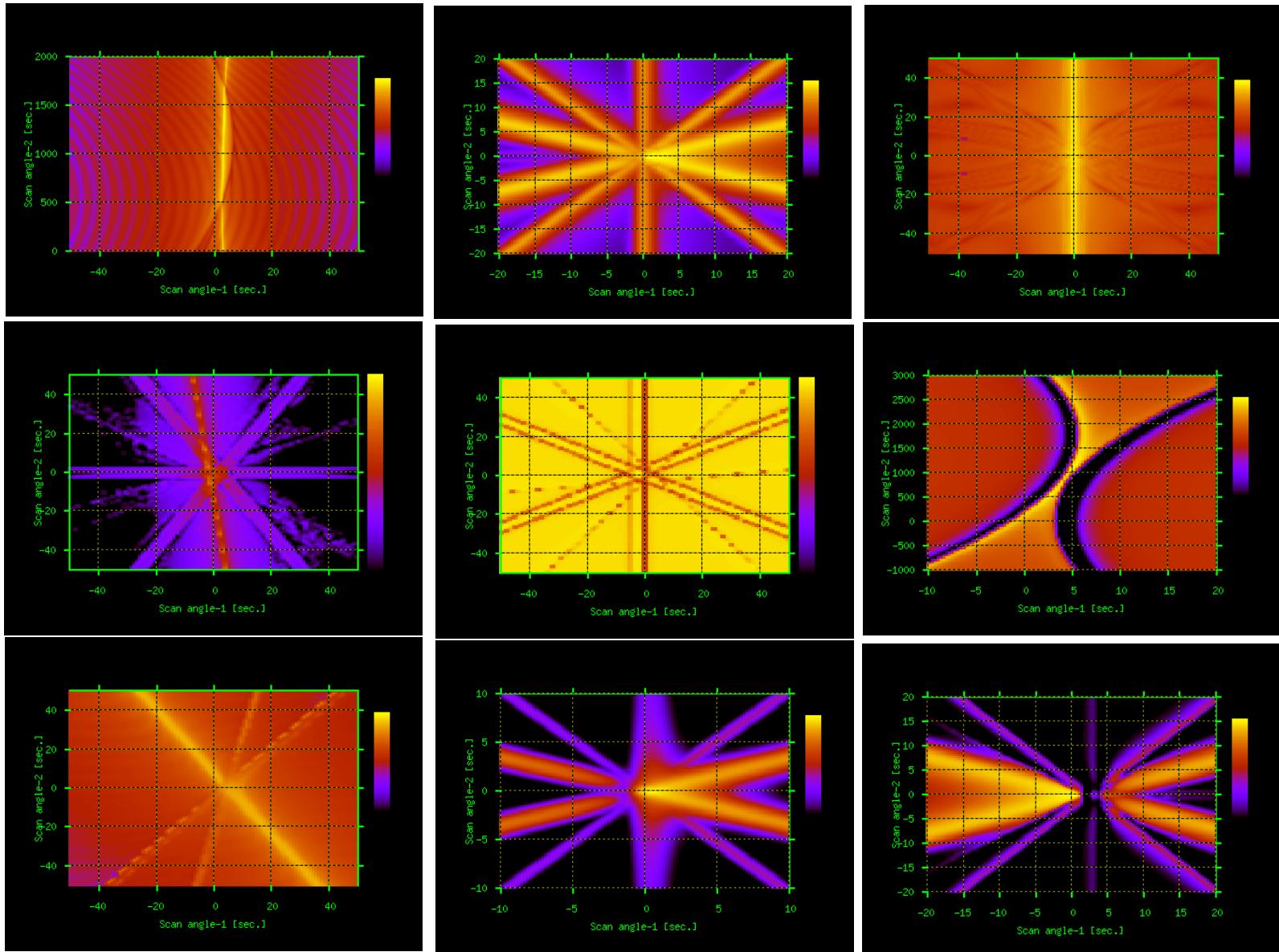
Scan limits (Theta1): from to points =
Scan limits (Theta2): from to points =
Scan axes: [1] Theta2 along sigma0 Scan angle units:

Specified reflections:

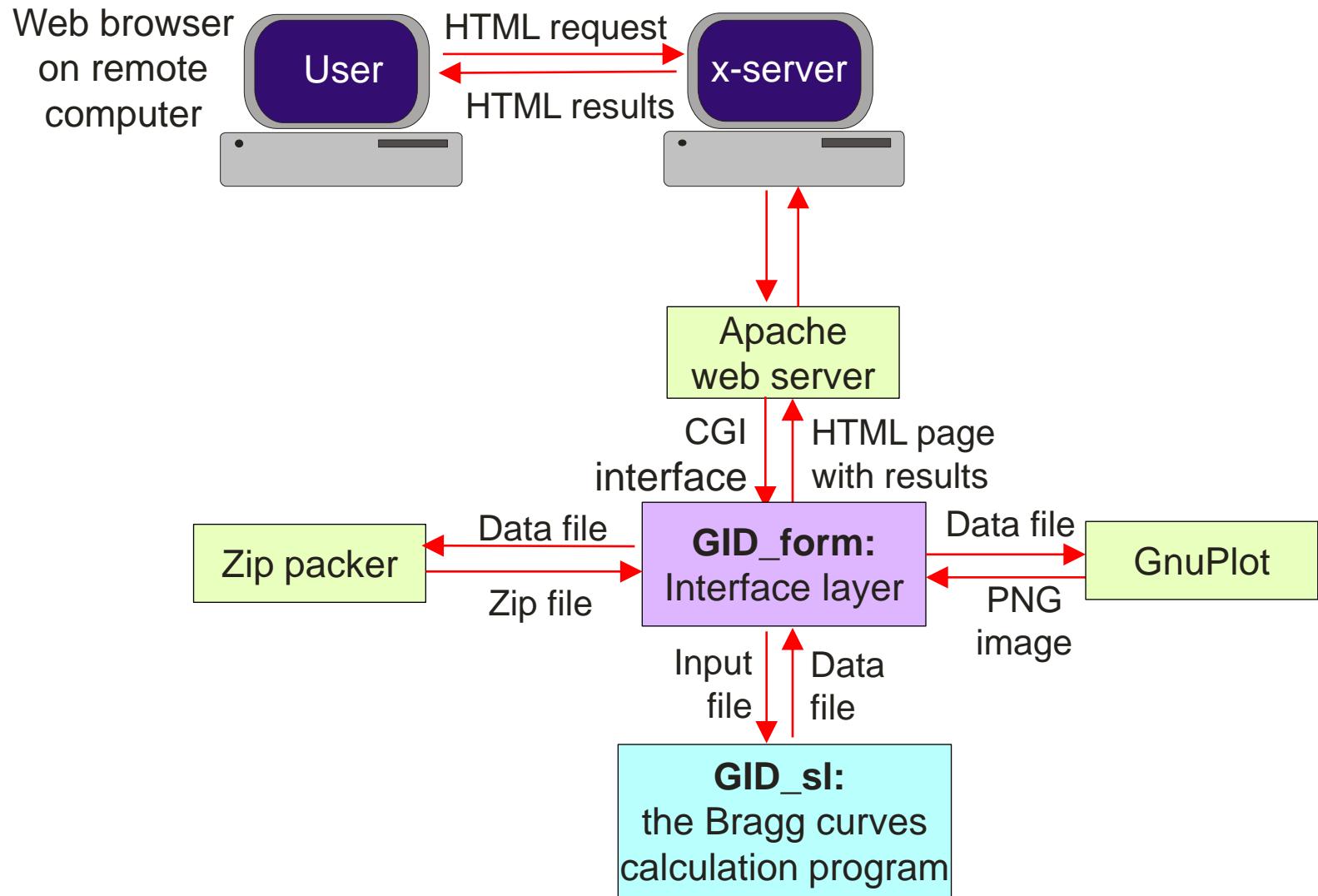
Reflex1 = (1 1 1) QB = 24.840 deg. $|xh/x0| = 52.895\%$ $|\alpha/x0| = 0.105E-10$
Reflex2 = (2 2 0) QB = 43.314 deg. $|xh/x0| = 60.859\%$ $|\alpha/x0| = 0.210E-10$
Reflex3 = (3 1 1) QB = 53.552 deg. $|xh/x0| = 39.863\%$ $|\alpha/x0| = 0.700E-11$

Additional reflections search results (you can select up to 8 planes if available):
Searching from (-5 -5 -5) to (5 5 5) Intensity filter $|xh/x0| > 0.100\%$

Reflex4 = (1 -1 1) QB = 24.840 deg. $|xh/x0| = 52.895\%$ $|\alpha/x0| = 0.105E-10$
 Reflex5 = (2 -2 0) QB = 43.314 deg. $|xh/x0| = 60.859\%$ $|\alpha/x0| = 0.210E-10$
 Reflex6 = (3 -1 1) QB = 53.552 deg. $|xh/x0| = 39.863\%$ $|\alpha/x0| = 0.350E-10$
 Reflex7 = (4 0 0) QB = 75.964 deg. $|xh/x0| = 50.816\%$ $|\alpha/x0| = 0.280E-10$


Step-1 Step-2

- Step-1 helps finding multiple diffraction configurations and Step-2 defines Bragg scans around arbitrary axes
- Applications:** X-ray optics (multiple diffraction effects including polarization glitches in X-ray monochromators)


Plans:

- Improve algorithm for thick crystals (provide better numerical stability).

Multiple diffraction program BRL examples

How X-ray Server works

Server access is not limited to web browsers

xway

X-rays:

Wavelength (Å): 10 wave

Energy (keV): wave

Characteristic line: Cu-K α code

Target: coway

Crystal: Silicon code

Other material: code

Chemical formula: and density (g/cm³): code

Reflection:

i1 df1df2
i2 df1df2
i3 df1df2

Miller indices: 1 1 1 df1df2

Database Options for dispersion corrections df1, df2:

Auto (Henke at low energy, X0h at mid, Brennan-Cowan at high).
 Use X0h data (5-25 keV or 0.5-2.5 Å) -- recommended for Bragg diffraction
 Use Henke data (0.01-30 keV or 0.4-1200 Å) -- recommended for soft x-ray
 Use Brennan-Cowan data (0.03-700 keV or 0.02-400 Å)
 Compare results for all of the above sources.

Output Options:

Print atomic coordinates detail
 Text-form output modeout

Get X0h! Reset

```
#!/bin/bash
url=https://x-server.gmca.aps.anl.gov/cgi/x0h_form.exe
curl ${url}?xway=2&wave=10&coway=0&code=Silicon&i1=1&i2=1&i3=1
```

```
#!/usr/bin/perl
use LWP::UserAgent;
use LWP::Protocol::https;
$url = 'https://x-server.gmca.aps.anl.gov/cgi/x0h_form.exe';
$FORM{'xway'} = 2;
$FORM{'wave'} = 10;
$FORM{'coway'} = 0;
$FORM{'code'} = 'Silicon';
($FORM{'i1'},$FORM{'i2'},$FORM{'i3'}) = (1, 1, 1);
$FORM{'df1df2'} = -1;
$FORM{'detail'} = 0;
$FORM{'modeout'} = 1;
$request = '';
foreach $key (keys %FORM) {$request .= '&'.$key.'='.$FORM{$key};}
$request =~ s/^&/?/;
$ua = LWP::UserAgent->new;
$response = $ua->get($url.$request);
if ($response->is_success) {print $response->content;}
else {printf "*** Error: %s\n", $response->status_line;}
```

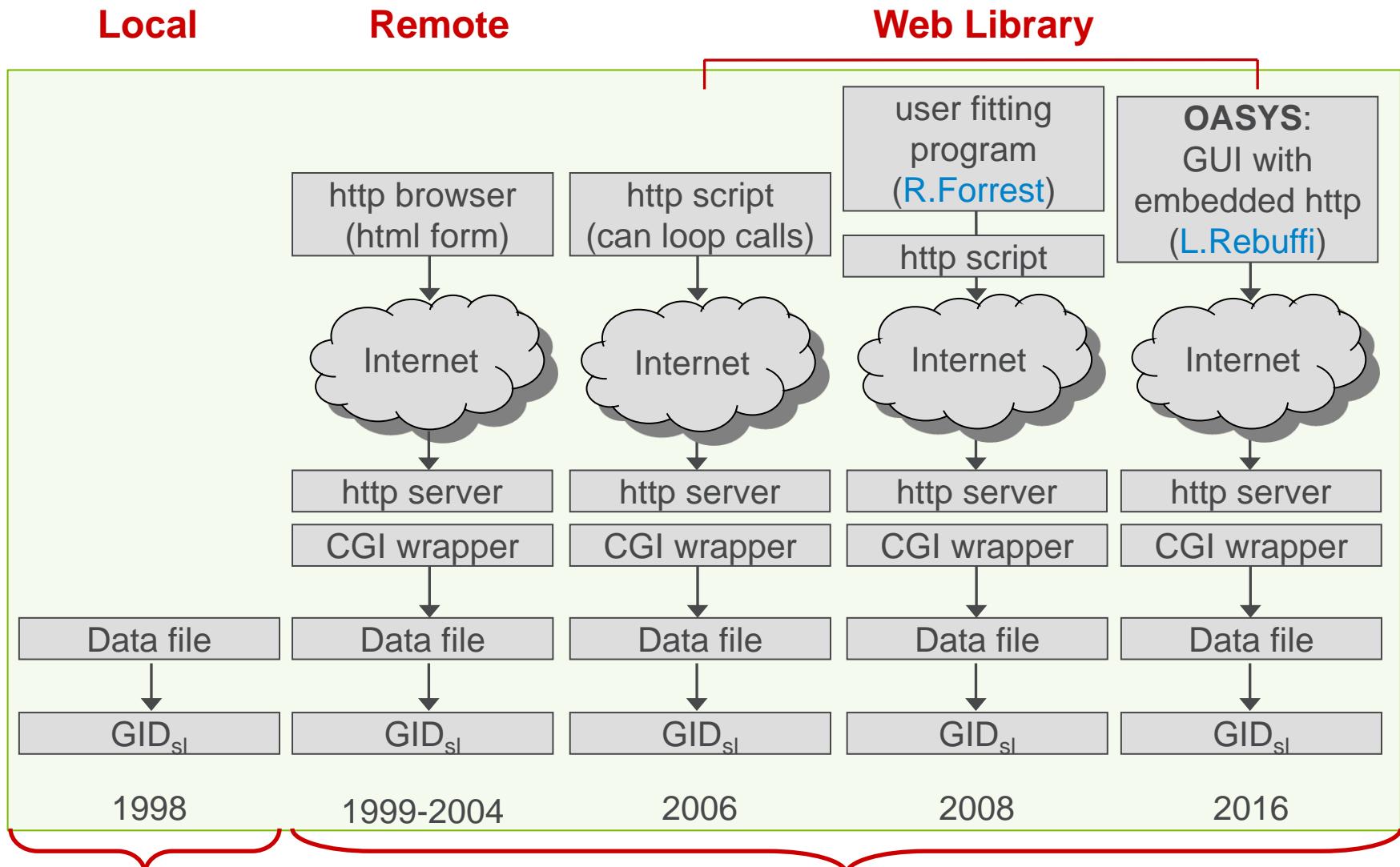
```
#!/usr/bin/python
import requests
import sys
url = 'https://x-server.gmca.aps.anl.gov/cgi/x0h_form.exe'
FORM = {
    'xway': 2,
    'wave': 10,
    'line': '',
    'coway': 0,
    'code': 'Silicon',
    'i1': 1, 'i2': 1, 'i3': 1,
    'df1df2': -1,
    'detail': 0,
    'modeout': 1
}
response = requests.get(url, params=FORM)

if not response.ok:
    print(f"\n*** Error from the server: {response.status_code}")
else:
    print(response.text)
```

• Python scripts were generated from Perl with the help of AI

Downloadable examples of X-ray Server access scripts

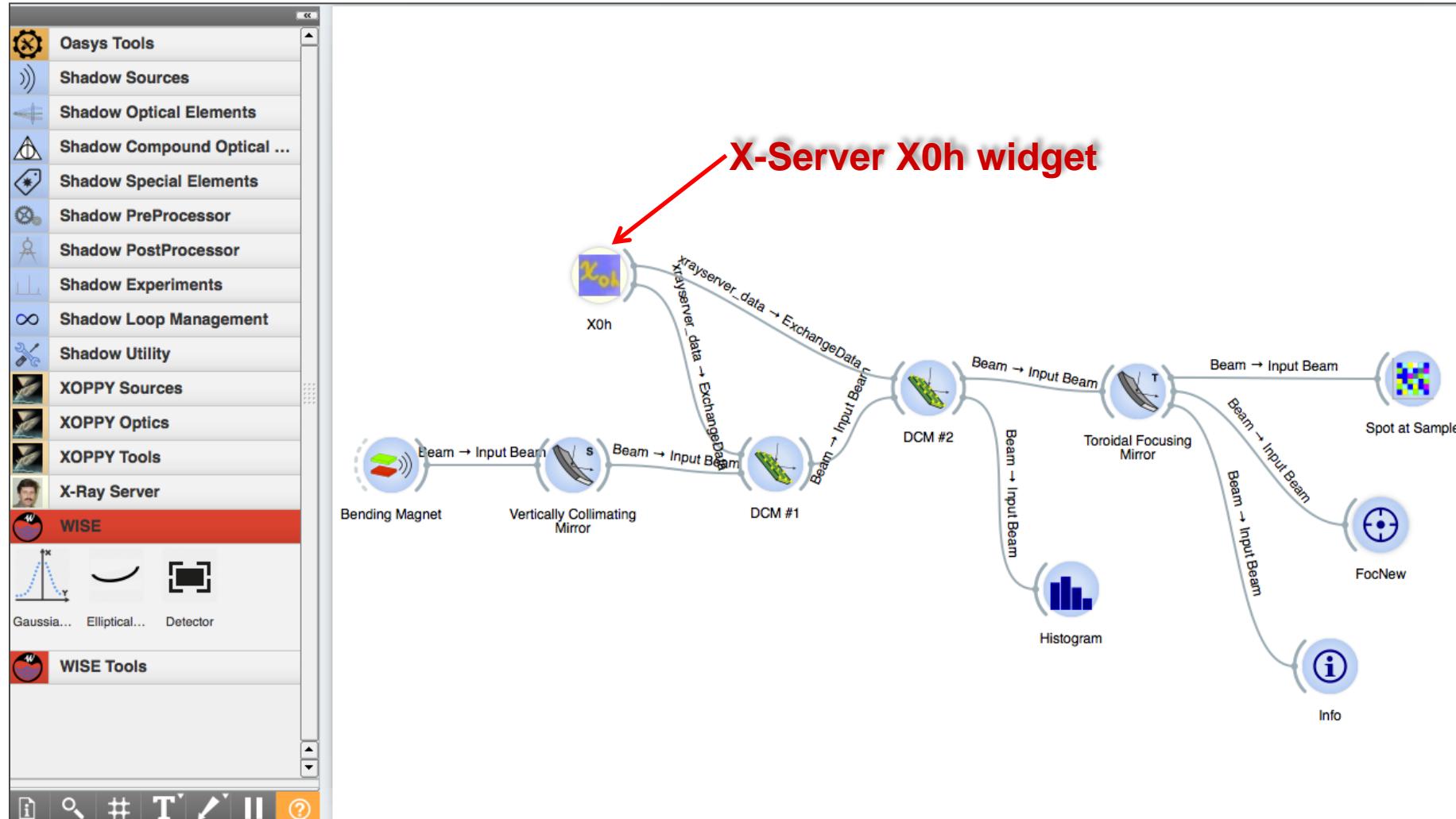
<https://x-server.gmca.aps.anl.gov/automation.html>


Program	Python script	Perl script
<i>X0h</i> web interface	<code>getX0h.py</code>	<code>getX0h.pl</code>
<i>GID_s</i> web interface	<code>getGID_query_post.py</code>	<code>getGID_query_post.pl</code>
<i>TER_s</i> web interface	<code>getTER_query_post.py</code>	<code>getTER_query_post.pl</code>

The scripts can be called from user's software written in any language using the **system** function. If one needs to vary a parameter, it can be passed to the script as a command line argument.

These scripts present a practical example of client software accessing the server programs. They are simple, but they **should be simple** to become useful since they target wide auditory of physicists including those who are unexperienced in web interfaces.

With such scripts X-ray Server can be used as a web-based software library


X-ray Server as a library: evolution

Developed for
a paper

X-Ray Server

OASYS: new level of interaction with X-ray Server

X-ray Server access is embedded into Oasys and user does not need to do any programming; just add the X-ray Server widgets to your Oasys project.

Courtesy: Dr. Luca Rebuffi

Some statistics of X-ray Server usage

Frequent users per main programs

Program	Calculations	Total IP addresses	IPs using 100+ times
X0h	3,220,491	22,662	698
GID_sl	1,947,106	10,523	658
TER_sl	426,121	6,328	150

Ten top IP domains most frequently using X-ray server

Nr	ID Domain (number of IPs)	Calculations
1	desy.de (1190)	945,608
2	stanford.edu incl. SLAC/SSRL (822)	816,867
3	kit.edu incl. ANKA (514)	718,713
4	uh.edu (97)	348,973
5	lu.se + lth.se (340)	290,966
6	utwente.nl (263)	20,643
7	synchrotron-soleil.fr (7)	19,858
8	psi.ch (212)	17,350
9	esrf.fr (16)	17,301
10	anl.gov (483)	16,488

DESY is #1. Need to add many calls from home and cell ISPs with Geo location in Hamburg

Conclusions

- ❑ We have a well refined resource for the calculations of X-ray dynamical diffraction, specular reflection and diffuse scattering with almost 30 years of online history.
- ❑ The main applications are X-ray optics and X-ray material science.
- ❑ To get most of this resource, e.g. implement data fitting, one needs to use tools beyond web browser.
- ❑ Python and Perl fully functional examples are provided to write such tools on your own, and for some tasks one can use already developed tools like Oasys plugin by Dr. Luca Rebuffi.
- ❑ Users are invited to share the tools they developed: these tools can be hosted on the server for the benefit of the whole community – same way as any user-submitted structures are available to everyone using the server.
- ❑ Users are welcome to submit new crystals to the server DB and soon they will be able to do it automatically
- ❑ Several improvements for the X0h, TER_sl and BRL programs are in plans

Acknowledgements

X-Ray Server is hosted on a computer of the GM/CA@APS at Argonne National Laboratory. GM/CA@APS has been funded in whole or in part with Federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006).

Special thanks to many X-Ray Server users for providing their valuable feedback and suggestions and for submitting new structures.